139 resultados para rotational oscillation
Resumo:
The autorotation of two tandem triangular cylinders at different gap distances is investigated by numerical simulations. At the Reynolds number of 200, three distinct regimes are observed with the increase of gap distance: namely, angular oscillation, quasi-periodic autorotation and ‘chaotic’ autorotation. For various gap distances, the characteristic of vortex shedding and vortex interaction are discussed. The phase graphs (angular acceleration vs. angular velocity) and the power spectra of moment are analyzed to characterize the motion of the cylinder. The Lyapunov exponent is also calculated to identify the existence of chaos.
Resumo:
A vortex-induced vibration (VIV) model is presented for predicting the nonlinear dynamic response of submerged floating tunnel (SFT) tethers which are subjected to wave, current and tunnel oscillatory displacements at their upper end in horizontal and vertical directions. A nonlinear fluid force formula is introduced in this model, and the effect of the nonlinearity of tether is investigated. First, the tunnel is stationary and the tether vibrates due to the vortices shedding. The calculated results show that the cross-flow amplitude of VIV decreases compared with the linear model. However the in-line amplitude of VIV increases. Next, the periodical oscillation of tunnel is considered. The oscillation caused by wave forces plays the roles of parametric exciter and forcing exciter to the VIV of tether. The time history of displacement of the tether mid-span is obtained by the proposed model. It is shown that the in-line amplitude increases obviously and the corresponding frequency is changed. The cross-flow amplitude exhibits a periodic behavior.
Resumo:
Hartmann-Sprenger(H-S)管在一定条件下,可以使射流气体产生按一定频率激励的强烈振荡.对H-S管的振荡流动进行了数值模拟和实验研究.数值模拟结果显示出H-S管在吞吐模式下流场的周期变化,在对应的试验瞬态纹影图上,则观察到相应的吞吐射流气体,揭示了H-S管激励的工作机理.通过大量的实验研究,对小管径共振管的频率估算公式进行了修正,提高了振荡频率估算的准确度,为以后设计给定激励频率的射流喷嘴奠定了基础.
Resumo:
A three-dimensional MHD solver is described in the paper. The solver simulates reacting flows with nonequilibrium between translational-rotational, vibrational and electron translational modes. The conservation equations are discretized with implicit time marching and the second-order modified Steger-Warming scheme, and the resulted linear system is solved iteratively with Newton-Krylov-Schwarz method that is implemented by PETSc package. The results of convergence tests are plotted, which show good scalability and convergence around twice faster when compared with the DPLR method. Then five test runs are conducted simulating the experiments done at the NASA Ames MHD channel, and the calculated pressures, temperatures, electrical conductivity, back EMF, load factors and flow accelerations are shown to agree with the experimental data. Our computation shows that the electrical conductivity distribution is not uniform in the powered section of the MHD channel, and that it is important to include Joule heating in order to calculate the correct conductivity and the MHD acceleration.