187 resultados para radiation protection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Au (Au/C) catalyst for the cathodic catalyst in a direct formic acid fuel cell (DFAFC) was prepared using a polyvinyl alcohol (PVA) protection method. The results indicated that for oxygen reduction, the electrocatalytic activity of the Au/C catalyst prepared with the PVA protection method is much better than that of a Au/C catalyst prepared with the pre-precipitation method. This is due to the small average size and low relative crystallinity of the An particles in the Au/C catalyst prepared by the PVA protection method, compared to that of the Au/C catalyst prepared by the pre-precipitation method, illustrating that the average size and the relative crystallinity of the ALL particles has an effect on the electrocatalytic activity of the Au/C catalyst for oxygen reduction. In addition, because An has no electrocatalytic activity for the oxidation of formic acid, the Au/C catalyst possesses a high formic acid tolerance. After the electrocatalytic activity of the Au/C catalyst for the oxygen reduction is improved, it is suitable to be used as the cathodic catalyst in DFAFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdS nanocrystals were synthesized through AOT/heptane/H2O reverse micelles. New stable reverse mikelles were obtained by adding an appropriate amount of acrylic. acid monomer, CdS nanocrystal-poly(acrylic acid) composites were synthesized by gamma-radiation with a reverse mi'celle route at room temperature. The US nanocrystals with narrow size distribution were, found to be dispersed homogeneously in the poly(acrylic acid) matrix. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical resistivity of low-density polyethylene/carbon black composites irradiated by Co-60 gamma-rays was investigated as a function of temperature. The experimental results obtained by scanning electron microscopy, solvent extraction techniques, and pressure-specific volume-temperature analysis techniques showed that the positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects of the composites were influenced by the irradiation dose, network forming (gel), and soluble fractions (Sol). The NTC effect was effectively eliminated when the radiation dose reached 400 kGy. The results showed that the elimination of the NTC effect was related to the difference in the thermal expansion of the gel and Sol regions. The thermal expansion of the sol played an important role in both increasing the PTC intensity and decreasing the NTC intensity at 400 kGy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation crosslinking of carboxymethylcellulose (CMC) with a degree of substitution (DS) from 0.7 to 2.2 was the subject of the current investigation. CMC was irradiated in solid-state and aqueous solutions at various irradiation doses. The DS and the concentration of the aqueous solution had a remarkable affect on the crosslinking of CMC. Irradiation of CMC, even with a high DS, 2.2 in solid state, and a low DS, 0.7 in 10% aqueous solution, resulted in degradation. However, it was found that irradiation of CMC with a relatively high DS, 1.32, led to crosslinking in a 5% aqueous solution, and 20% CMC gave the highest gel fraction. CMC with a DS of 2.2 induced higher crosslinking than that with a DS of 1.32 at lower doses with the same concentration. Hence, it was apparent that a high DS and a high concentration in an aqueous solution were favorable for high crosslinking of CMC. It is assumed that; high radiation crosslinking of CMC was induced by the increased mobility of its molecules in water and by the formation of CMC radicals from the abstraction of H atoms from macromolecules in the intermediate products of water radiolysis. A preliminary biodegradation study confirmed that crosslinked CMC hydrogel can be digested by a cellulase enzyme. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(butylene succinate), (PBS1) was irradiated with Co-60-gamma radiation at various temperatures. The gel fraction of PBS I irradiated at molten state (100 degreesC) is higher than that of the samples irradiated at lower temperatures with the same dose. Two-step irradiation ( irradiation at room temperature and then irradiation at 100 degreesC) yielded the highest gel content as compared with other treatment conditions. It is due to the network structure formed by preirradiation at room temperature and further irradiation at molten state reduce degradation of PBS1. PBS1 prepared by the two-step irradiation was improved in heat distortion resistance because of its higher gel content. Unirradiated PBS1 sheets broke immediately at 110 degreesC. On the other hand, for samples (gel fraction 50%) irradiated by asing the two-step method, they did not break even at 130 degreesC for 200 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(butylene succinate), (PBS) with different molecular weight was gamma -irradiated at different temperatures and various doses. PBS with high molecular weight and smaller peak area of crystal melting gave the highest gel content at the same temperatures and dose. A two-step irradiation (irradiation in molten state after irradiation at room temperature) gave the highest gel content in different conditions. This is due to the formation of network structure by pre-irradiation at room temperature that leads to less degradation. PBS prepared by two step irradiation was effective for improvement of heat stability because of high gel content formation. Unirradiated PBS sheets broke immediately at 110 degrees, while the irradiated sample (gel fraction, 50%) by a two step-method did not break even up to 200 minutes at 130 degreesC. The PBS sheets are biodegradable even after crosslinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the role of active oxygen species in mediating plant injuries induced by far-UV radiation, seedlings of Taxus cuspidata Sieb. et Zucc. were irradiated by far-UV rays in laboratory for 4 weeks. The production of organic free-radicals in detached needles, and the production of O-2(radical anion) and O-1(2) in isolated chloroplasts were detected weekly by electron spin resonance (ESR) to evaluate their relative importance. The results show that the cumulative effect of far-UV irradiation, is best indicated by the production of organic free radicals in the needles, O-2(radical anion) production in chloroplasts is the next. The enhancement of O-1(2) production in chloroplasts by the cumulative far-UV irradiation seems to be not so important as O-2(radical anion) in mediating injuries induced by, far-UV radiation because of its high background value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation crosslinking of polymers mainly depends on the structure of polymer chain. The flexibility and mobility of chain directly influence the possibility of the reactive radicals recombination. Flexible chain is easier to crosslink than rigid-chain polymer. The latter must be crosslinked at high temperature, as most polymers can only crosslink above their melting point. Structural effect also influences the mechanism of radiation crosslinking of polymers. We find from the results in literature and in our laboratory that, the flexibility chain polymer mainly crosslinked with H type, but the rigid chain polymer mainly crosslinked with Y type. (C) 2001 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

trans-1,4-Polybutadiene (PTBD) was synthesized by rare earth catalyst system, The effect of electron radiation on phase transition from monoclinic phase to hexagonal phase was observed by TEM, Electron diffraction patterns of monoclinic phase, hexagonal phase and two coexistent phases were recorded, The mechanism of phase transition was also discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research carried out at the Chinese Institute of Applied Chemistry has contributed significantly to the understanding of the radiation chemistry of polymers. High energy radiation has been successfully used to cross-link fluoropolymers and polyimides. Here chain flexibility has been shown to play an important role, and T-type structures were found to exist in the cross-linked fluoropolymers. A modified Charlesby-Pinner equation, based upon the importance of chain flexibility, was developed to account for the sol-radiation dose relationship in systems of this type. An XPS method has been developed to measure the cross-linking yields in aromatic polymers and fluoropolymers, based upon the dose dependence of the aromatic shake-up peaks and the F/C ratios, respectively. Methods for radiation cross-linking degrading polymers in polymer blends have also been developed, as have methods for improving the radiation resistance of polymers through radiation cross-linking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aimed at saving the radiation dose required to crosslinking the polyamid-1010, BMI/PA1010 systems containing different amounts of difunctional crosslinking agent N,N'-bis-maleimide-4,4'-biphenyl methane (BMI) were prepared and the structure changes at the crystallographic and supermolecular levels before and after irradiation were studied by using WAXD, SAXS, and DSC techniques. It was found that by incorporation of BMI the microcrystal size L-100 is lowered due to the formation of hydrogen bond between the carbonyl oxygen of BMI and the amide hydrogen of PA1010 in the hydrogen bonded plane, and the overall crystallinity W-c is also decreased. The presence of BMI causes the crystal lamella thickness d(c) to decrease and greatly thickens the transition zone d(tr) between the crystalline and amorphous regions. As for the irradiated specimen, the maximum increments in the L-100 and W-c against dose curves decrease with BMI content, and the interception point D-i, at which the L-100 and W-c curves intercept their respective horizontal line of L-100/L-100(0) and W-c/W-c(0)=1, shift to lower dose with an increase in BMI concentration. In addition. the mechanism of the radiation chemical reactions in the three different phases under the action of BMI are discussed with special focus on the interface region. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.