151 resultados para lipidic cubic phase crystallization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of high-density polyethylene (HDPE) with novel linear low-density polyethylene (LLDPE) samples in the whole range of compositions were investigated by means of differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The LLDPEs are ethylene/octene-1 copolymers prepared with a single-site catalyst, with a narrower distribution of branches compared to Ziegler-Natta type polymers. It was found that cocrystallization or separate crystallization in the blends profoundly depends on the content of branches in the LLDPE, while the critical branch content of the novel LLDPE for separate crystallization is much lower than that of commercial LLDPE (prepared with Ziegler-Natta catalysts). This implies that the miscibility of linear and branched polyethylene is also affected by the distribution of branches. The marked expansion of the unit cell in cocrystals, which are formed by HDPE with the novel LLDPE, indicates that the branches are included in the crystal lattice during the cocrystallization process. The result is very helpful to understand the phenomenon that the unit cell dimensions of commercial branched polyethylene are larger than those of linear polyethylene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The miscibility and crystallization behavior of poly(beta-hydroxybutyrate) (PHB) and poly(p-vinylphenol) (PVPh) blends were studied by differential scanning calorimetry and optical microscopy (OM). The blends exhibit a single composition-dependent glass transition temperature, characteristic of miscible systems, A depression of the equilibrium melting temperature of PHB is observed. The interaction parameter values obtained from analysis of the melting point depression are of large negative values, which suggests that PHB and PVPh blends are thermodynamically miscible in the melt. Isothermal crystallization kinetics in the miscible blend system PHB/PVPh was examined by OM. The presence of the amorphous PVPh component results in a reduction in the rate of spherulite growth of PHB. The spherulite growth rate is analyzed using the Lauritzen-Hoffman model, The isothermally crystallized blends of PHB/PVPh were examined by wide-angle X-ray diffraction and smell-angle X-ray scattering (SAXS). The long period obtained from SAXS increases with the increase in PVPh component, which implies that the amorphous PVPh is squeezed into the interlamallar region of PHB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of crystallinity and polymorphism during hot-drawing of amorphous poly(ether ether ketone ketone) (PEEKK) as a function of strain rate, draw ratio, and temperature was investigated. In modification I, the competition of chain extension and molecular alignment is responsible for the strain rate and temperature dependence. Modification II crystallization is basically controlled by chain extension during stretching. The former can be transformed into the latter via relaxation during stretching or annealing at elevated temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the syndiotacticity on the crystallization behaviour of syndiotactic polypropylene (sPP) has been investigated. The syndiotacticity has been measured by C-13-NMR spectroscopy and the phase formation has been observed by electron diffraction of oriented samples. It is shown that the crystal phase formation depends strongly on the perfection of the tacticity of the macromolecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microphase separation, glass transition and crystallization of two series of tetrahydrofuran-methyl methacrylate diblock copolymers (PTHF-b-PMMA), one with a given PTHF block of M(n) = 5100 and the other with a given PTHF block of (M) over bar(n) = 7000, were studied in this present work. In the case of solution-cast materials, the microphase separation of the copolymer takes place first, with crystallization then gradually starting in the formed PTHF microphase. The T-g of the PMMA microphase shows a strong dependence on the molecular weight of the PMMA block, while the T-g of the PTHF microphase shows a strong dependence on the copolymer composition. The non-isothermal crystallization temperature (T-c) of the diblock copolymer decreases rapidly and continuously with the increase in the amorphous PMMA weight fraction; the lowest T-c of the copolymer is ca. 35 K lower than the T-c of the PTHF homopolymer. There also exists a T-c dependence on the molecular weight of the PTHF block. In addition, when the major component of the copolymer is PMMA, a strong dependence of the crystallizability of the copolymer on the molecular weight of the PTHF block is observed; the higher the molecular weight, then the stronger its crystallizability. The melting temperature of the block copolymer is dependent on the copolymer composition and the molecular weight of its crystallizable block. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scanning electron microscopy (SEM) and an image analyser are used to study morphologies of the fractured surface, etched by hot phenol, of polypropylene/maleated polypropylene/polyamide 12 PP/PP-MA/PA12) = 65/10/25 blend and PP-MA/PA12 = 75/25 blend. The particle dimension and its distribution of PA12 dispersed phase in these blends are much lower and narrower than that of the PP/PA12. blends. Especially, most of the particles in the PP-MA/PA12 = 75/25 blend are smaller than 0.1 mu m. The effect of the morphology of PP/PA12 blends on their crystallization behaviour is studied using differential scanning calorimetry and SEM. PA12 dispersed phase coarsens during annealing in the PP/PP-MA/PA12 = 65/10/25 blend. The mechanism of coarsening of the PA12 dispersed phase is a coalescence process. The intense mixing between the PP component and the PA12 component through reaction of PP-MA and PA12 leads to a change of dynamic mechanical behaviour of the components. A separation method is used to separate the polyolefin parts (precipitated from hot phenol), from PA12 parts (hot phenol filtrate). Of PP/PP-MA/PA12 = 65/10/25 blend, infra-red measurements and elementary analysis show that the precipitate has a lower PA12 content than the feed, whereas the filtrate has a higher PA12 content. From PP-MA/PA12 = 75/25 blend, PA12 contents in the precipitate and the filtrate are the same as in the feed. This implies that all PA12 has reacted with all PP-MA in the latter case while not in the former case. Using the method of interface exposure, interfacial reaction of PP-MA with PA12 is studied by X-ray photoelectron spectrometry (X.p.s.). Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miscibility, crystallization, and mechanical properties of blends of thermosetting polyimide PMR-15 and phenolphthalein poly(ether ketone) (PEK-C) were examined. With the exception of the 90/10 blend, which has two glass transition peaks, all the blends with PMR-15 less than 90 wt % are miscible in the amorphous state according to DMA results. Addition of PEK-C hindered significantly the crystallization of PMR-15, indicating that there must exist some kind of interaction between molecular chains of PMR-15 and those of PEK-C. The semi-IPN system of PMR-15/PEK-C blends exhibits good toughness. Two distinct microphases, interweaving at the phase boundaries, were found in the PMR-15/PEK-C 60/40 blend. The toughness effect of the blends is discussed in terms of the interface adhesion between the two distinct phases and the domain sizes of the phases. The relation between miscibility and toughness of the blends was investigated. (C) 1996 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the morphology of polypropylene (PP)/nylon 12 (PA12) blends on their crystallization behaviour is studied using differential scanning calorimetry and scanning electron microscopy. In PP/maleated polypropylene (PP-MA)/PA12 = 65/10/25 blend, simultaneous crystallization of the PP/PA12 blend occurs under some conditions. When the diameter of the dispersed phase (PA12) is smaller than 0.5 mu m, PP crystallizes first and its crystals induce the crystallization of PA12. When some of the PA12 particles are larger than 0.5 mu m, this part of PA12 crystallizes first. Then this part of the PA12 crystals induces the crystallization of PP, and PP crystals induce the crystallization of PA12 fine droplets in turn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compound La2MoO5 has a cubic fluorite symmetry. There is strong interaction between the two molybdenum ions (IV). The cubic-La2MoO5 oxide contains separated Mo2O8 clusters and is a semiconductor. The electrical resistivity measurement shows a semiconductor-metal transition around 250 degrees C. Temperature dependence of magnetic susceptibility represents the Curie-Weiss law. The compound La2MoO5 exhibits a paramagnetic behaviour from 170-250 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on Jeziorny theory, the kinetics of phase transition of poly(ester-imide) has been determined under non-isothermal condition by using differential scanning calorimetry (DSC). Avrami exponent n, kinetic parameters G(c) and rate constant Z(c) were derived and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compatibility and crystallization of tetrahydrofuran-methyl methacrylate diblock copolymer (PTHF-b-PMMA)/tetrahydrofuran homopolymer (PTHF) blends were studied. Our results showed that the crystallization and morphology of compatible PTHF-b-PMMA/PTHF

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization behavior of a series of newly synthesized poly (tetrahydrofuran-b-methyl methacrylate) diblock copolymer has been studied by differential scanning calorimetry (DSC) and X-ray scattering and diffraction techniques. The results show that the

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of crystallizable poly(vinyl alcohol) (PVA) with poly(N-vinyl-2-pyrrolidone) (PVPy) were studied by C-13 cross-polarization/magic angle spinning (CP/MAS) n.m.r. and d.s.c. The C-13 CP/MAS spectra show that the blends were miscible on a molecular level over the whole composition range studied, and that the intramolecular hydrogen bonds of PVA were broken and intermolecular hydrogen bonds between PVA and PVPy formed when the two polymers were mixed. The results of a spin-lattice relaxation study indicate that blending of the two polymers reduced the average intermolecular distance and molecular motion of each component, even in the miscible amorphous phase, and that addition of PVPy into PVA has a definite effect on the crystallinity of PVA in the blends over the whole composition range, yet there is still detectable crystallinity even when the PVPy content is as high as 80 wt%. These results are consistent with those obtained from d.s.c. studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) with a series of poly(ethylene oxide-co-propylene oxide) (EPO) has been studied. It was found that the critical copolymer composition for achieving miscibility with phenoxy around 60-degrees-C is about 22 mol % ethylene oxide (EO). Some blends undergo phase separation at elevated temperatures, but there is no maximum in the miscibility window. The mean-field approach has been used to describe this homopolymer/copolymer system. From the miscibility maps and the melting-point depression of the crystallizable component in the blends, the binary interaction energy densities, B(ij), have been calculated for all three pairs. The miscibility of phenoxy with EPO is considered to be caused mainly by the intermolecular hydrogen-bonding interactions between the hydroxyl groups of phenoxy and the ether oxygens of the EO units in the copolymers, while the intramolecular repulsion between EO and propylene oxide units in the copolymers contributes relatively little to the miscibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies using transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction showed correlations between the crystallization behavior of the polydimethylsiloxane (PDMS) block and the morphology of the block copolymer poly (butadiene-b-dimethylsiloxane) (PB-PDMS). When the PDMS component existed as spheres dispersed in a PB matrix, the crystallization rate of the PDMS block was lower than when the PDMS phase existed in rod or cylinder form.