222 resultados para dissolution efficiency
Resumo:
Cellulose phenylcarbamate derivatives having methacrylate groups were synthesized with regioselective and non-regioselective procedures. These derivatives were chemically immobilized onto a vinylized silica gel, respectively, via a radical co-polymerization reaction. The immobilization was efficiently attained using a small amount of AIBN. The chiral recognition abilities of the prepared chiral stationary phases (CSPs) were evaluated by HPLC resolution of test enantiomers. It was observed that most of the enantiomers were completely resolved with markedly high column efficiency of 30,000-40,000 plates per metre for the eluted peaks. The effect of the amount of methacrylolyl chloride used for preparation on resolution was investigated. A direct comparison of the chiral recognition ability was made on the regioselectively and non-regioselectively prepared CSPs. In addition, the chemically bonded-type of CSPs were found to be relatively stable with addition of solvents such as tetrahydrofuran (THF) and chloroform into the mobile phase, which can lead to the dissolution of cellulose derivatives on the coated CSPs. Thus the choice of solvents used as the mobile phase is greatly extended and better resolution of several test enantiomers was observed on the prepared CSPs with THF and chloroform as a composition in the mobile phase. The batch-to-batch and run-to-run reproducibility was also discussed on the newly prepared CSPs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
National Natural Science Foundation of China [30590381, 40971027]; State Key Technologies RD Program [2006BAC08]; Chinese Academy of Sciences ; National Key Research and Development Program [2010CB833501]
Resumo:
Science & Technology Basic Work Program of China: Scientific Survey of the Middle-lower Reaches of Lantsang River and the Great Shangri-La Region [2008FY110300]; National Basic Research Program of China (973 Program): Ecosystem Services and Ecological Safety of the Major Terrestrial Ecosystems of China [2009CB421106]; National Natural Science Foundation of China [30670374]; EU ; European Commission, DG Research [003874]
Resumo:
National Natural Science Foundation of China [70673097]
Efficiency and sustainability analysis of grain production in Jiangsu and Shaanxi Provinces of China
Resumo:
Radiation-use efficiency (RUE, g/MJ) and the harvest index (HI, unitless) are two helpful characteristics in interpreting crop response to environmental and climatic changes. They are also increasingly important for accurate crop yield simulation, but they are affected by various environmental factors. In this study, the RUE and HI of winter wheat and their relationships to canopy spectral reflectance were investigated based on the massive field measurements of five nitrogen (N) treatments. Crop production can be separated into light interception and RUE. The results indicated that during a long period of slow growth from emergence to regreening, the effect of N on crop production mainly showed up in an increased light interception by the canopy. During the period of rapid growth from regreening to maturity, it was present in both light interception and RUE. The temporal variations of RUEAPAR (aboveground biomass produced per unit of photosynthetically active radiation absorbed by the canopy) during the period from regreening to maturity had different patterns corresponding to the N deficiency, N adequacy and N-excess conditions. Moreover, significant relationships were found between the RUEAPAR and the accumulative normalised difference vegetation index (NDVI) in the integrated season (R-2 = 0.68), between the HI and the accumulative NDVI after anthesis (R-2 = 0.89), and between the RUEgrain (ratio of grain yield to the total amount of photosynthetically active radiation absorbed by the canopy) and the accumulative NDVI of the whole season (R-2 = 0.89) and that after anthesis (R-2 = 0.94). It suggested that canopy spectral reflectance has the potential to reveal the spatial information of the RUEAPAR, HI and RUEgrain. It is hoped that this information will be useful in improving the accuracy of crop yield simulation in large areas.