456 resultados para amphiphilic copolymers, block copolymers, statistical copolymers, inverse emulsions, micelles
Resumo:
The relationship between molecular and crystalline structural characteristics of the ethylene -dimethylaminoethylmethacrylate copolymers (EDAM) was investigated and related to melt flow index MI and average gross content of DAM comonomer, in comparison with low density polyethylene (LDPE) produced by the common high-pressure radical polymerization process. Although the average molecular weight and its distribution are influenced predominantly by the polymerization conditions, DAM-content seems not to depend significantly on molecular weight according to the GPC-FT/IR measurement. Comonomer sequence distributions were determined quantitatively with the C-13-NMR spectra entirely assigned by DEPT and H-1-C-13 COSY techniques. The result suggests the alternating copolymerization tendency and surprisingly coincides with the simulation out-puts based on the assumption of continuous complete mixing reactor model, using Mayo-Lewis equation and the same Q-e values as previously reported on different types of copolymers such as EVA and St.DAM (VA;vinylacetate, St;styrene). It was confirmed by WAXD and SAXS analyses that the crystallinity X(c) and the thickness of lamellar crystal l(c) decreased with increasing DAM-content, whereas the a-lattice and b-lattice dimensions enlarged. X(c) and l(c) can definitely be correlated to the heats of fusion and crystallization measured by DSC. The average size of spherulites measured with light scattering photometry tends to be enlarged with decreasing molecular weight (increasing MI) and DAM-content.
Resumo:
A novel comb-like amphiphilic polymer, poly (2-acrylamidohexadecylsulfonic acid) (PAMC16S), was synthesized by free radical polymerization of the corresponding amphiphilic monomer in 1,4-dioxane-water mixed solvents. Depending on the ratio of water/dioxane in the solvent, the reaction proceeded by either precipitation polymerization or micellar polymerization. The molecular weight of the polymer obtained under similar conditions decreased and subsequently increased with the increase of water content in the mixed solvent. The polyion nature of PAMC16S was confirmed by viscosity data of ethanolic solutions. In addition, the polymer was characterized by solubility, IR, TG and wide angle X-ray diffraction methods.
Resumo:
Metallocene based polyethylenes were prepared by SMOPEC's "metallocene adduct" technology in a gas phase fluidized bed model reactor. The C-13-NMR spectra of ethylene/1-butene (S-34) and ethylene/1-hexene(S-43) copolymers were studied in a manner analogous to that established by Hsieh and Cheng. The comonomer sequence distributions of copolymer samples were obtained. The results show that these metallocene based copolymers contain a small amount of butene and hexene, and the EE and EEE sequences are dominant.
Resumo:
The comparison of aggregation behaviors between the branched block polyether T1107 (polyether A) and linear polyether (EO)(60)(PO)(40)(EO)(60) (polyether B) in aqueous solution are investigated by the MesoDyn simulation. Polyether A forms micelles at lower concentration and has a smaller aggregation number than B. Both the polyethers show the time-dependent micellar growth behaviors. The spherical micelles appear and then change to rod-like micelles with time evolution in the 10 vol% solution of polyether A. The micellar cluster appears and changes to pseudo-spherical micelles with time evolution in the 20 vol% solution of polyether A. However, the spherical micelles appear and change to micellar cluster with time evolution in the 20 vol% polyether B solution. The shear can induce the micellar transition of both block polyethers. When the shear rate is 1x10(5) s(-1), the shear can induce the sphere-to-rod transition of both polyethers at the concentration of 10 and 20 vol%. When the shear rate is lower than 1x10(5) s(-1), the huge micelles and micellar clusters can be formed in the 10 and 20 vol% polyether A systems under the shear, while the huge micelles are formed and then disaggregated with the time evolution in the 20 vol% polyether B system.
Resumo:
Self-assembled behavior of rod-terminally tethered three-armed star-shaped coil block copolymer melts was studied by applying self-consistent-field lattice techniques in three-dimensional (3D) space. Similar to rod-coil diblock copolymers, five morphologies were observed, i.e., lamellar, perforated lamellar, gyroidlike, cylindrical and sphericallike structures, while the distribution of the morphologies in the phase diagram was dramatically changed with respect to that Of rod-coil diblock copolymers.
Resumo:
Molecular weight dependence of phase separation behavior of the Poly (ethylene oxide) (PEO)/Poly(ethylene oxide-block-dimethylsiloxane) (P(EO-b-DMS)) blends was investigated by both experimental and theoretical methods. The cloud point curves of PEO/P(EO-b-DMS) blends were obtained by turbidity method. Based on Sanchez-Lacombe lattice fluid theory (SLLFT), the adjustable parameter, epsilon*(12)/k (quantifying the interaction energy between different components), was evaluated by fitting the experimental data in phase diagrams. To calculate the spinodals, binodals, and the volume changes of mixing for these blends, three modified combining rules of the scaling parameters for the block copolymer were introduced.
Resumo:
Self-assembly of binary blends of two triblock copolymers of poly(4-vinyl pyridine)-b-polystyrene-b-poly(4-vinyl pyridine), i.e., P4VP(43)-b-PS260-b-P4VP(43) (P1) and P4VP(43)-b-PS366-b-P4VP(43) (P2), in dioxane/water solution was studied. These two triblock copolymers individually tend to form vesicles (P2) and cylindrical micelles (P1) in dilute solution. It was found that copolymer components in the blend, sample preparation method, and annealing time had significant effect on hybridization aggregate morphology. By increasing P1 content in the copolymer blends, fraction of looped and stretched cylinders increased, while fraction of bilayers decreased. Nearly no bilayer was observed when P1 content was above 85 wt%.
Resumo:
We have studied the self-assembly of the ABA triblock copolymer (P4VP-b-PS-b-P4VP) in dilute solution by using binary block-selective solvents, that is, water and methanol. The triblock copolymer was first dissolved in dioxane to form a homogeneous solution. Subsequently, a given volume of selective solvent was added slowly to the solution to induce self-assembly of the copolymer. It was found that the copolymer (P4VP(43)-b-PS366-b-P4VP(43)) tended to form spherical aggregate or bilayer structure when we used methanol or water as the single selective solvent, respectively.
Resumo:
The formation of ring-shaped structures in an H-shaped block copolymer [a poly(ethylene glycol) backbone with polystyrene branches, i.e., (PS)(2)PEG(PS)(2)] thin film was investigated when it was annealed in saturated PEG-selective acetonitrile vapor. Our results clearly indicate that ring formation is determined by the initial morphology of the spin-coated film, the solvent vapor selectivity and the environmental temperature of the solvent-annealing process. Only the films with the initial core-shell cylindrical structure in strongly PEG-selective acetonitrile vapor could form the ring-shaped structures.
Resumo:
The amphiphilic PEG1 500-b-EM AP-b-PEG1 500 (EM PAP) triblock copolymer of poly(ethylene glycol) (PEG) and emeraldine aniline-pentamer (EM AP) in its concentrated solution can self-assemble into a special shape like "sandglass", as observed by transmission electron microscopy (TEM), field emission scanning electron microscopy (ESEM) and atomic force microscopy (AFM). This "sandglass"- shaped assembly is composed of several "rods" aggregated in the middle, with every "rod" being about 8 VLrn in length and 300 nm in diameter.
Resumo:
Self-assembled behavior of T-shaped rod-coil block copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. Compared with rod-coil diblock copolymers with the anchor point positioned at one end, the copolymers with the anchor point at the middle of the rod exhibit significantly different phase behaviors. When the rod volume fraction is low, the steric hindrance of the lateral coils prevents the rods stacking into strip or micelle as that in rod-coil diblock copolymers. The competition between interfacial energy and entropy results in the formation of lamellar structures and the increasing thickness of the lamellar layer with increasing rod volume fraction.
Resumo:
Novel bump-surface multicompartment micelles formed by a linear amphiphilic ABC triblock copolymer via self-assembly in selective solvent were successfully observed both in simulation and experiment. The results revealed that the block A forms the most inner core, and the blocks B and C form the inner and outer layers, respectively, and the bumps were formed by block A and more likely to be born on curving surfaces. Moreover, the micelle shape could be controlled by changing the solvent selectivity of the blocks A and B. Spherical, cylindrical, and discoidal micelles with bumpy surfaces were obtained both in experiment and simulation.
Resumo:
Self-assembling of synthesized novel biodegradable hyperbranched amphiphilic poly(ethylene glycol)-polyethylenimine-poly(epsilon-benzyloxycarbonyl-L-lysine) (PEG-PEI-PLys(Z)) in aqueous media is studied. In aqueous media. PLys(Z) is the hydrophobic segment, with PEG and PEI as the hydrophilic segments. It will self-assemble into spherical shape when the selected solvent water is dropped into the common solvent tetrahydrofuran (THF). And when PEG-PEI-PLYS in common solvent is dropped into mixed solvent water and THF, rings will come into King. The spherical and rings are observed by environmental scanning electron microscopy (ESEM) and transmission electron microscopy ITEM). It shows that the size of the sphere is about 100 nm, and the diameter of ring distributes from 400 nm to 10 mu m and bigger with the time roll around.