392 resultados para acrosome reaction
Resumo:
Cellulose phenylcarbamate derivatives having methacrylate groups were synthesized with regioselective and non-regioselective procedures. These derivatives were chemically immobilized onto a vinylized silica gel, respectively, via a radical co-polymerization reaction. The immobilization was efficiently attained using a small amount of AIBN. The chiral recognition abilities of the prepared chiral stationary phases (CSPs) were evaluated by HPLC resolution of test enantiomers. It was observed that most of the enantiomers were completely resolved with markedly high column efficiency of 30,000-40,000 plates per metre for the eluted peaks. The effect of the amount of methacrylolyl chloride used for preparation on resolution was investigated. A direct comparison of the chiral recognition ability was made on the regioselectively and non-regioselectively prepared CSPs. In addition, the chemically bonded-type of CSPs were found to be relatively stable with addition of solvents such as tetrahydrofuran (THF) and chloroform into the mobile phase, which can lead to the dissolution of cellulose derivatives on the coated CSPs. Thus the choice of solvents used as the mobile phase is greatly extended and better resolution of several test enantiomers was observed on the prepared CSPs with THF and chloroform as a composition in the mobile phase. The batch-to-batch and run-to-run reproducibility was also discussed on the newly prepared CSPs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.
Resumo:
The paper presents a theoretical study of the dynamics of the H + HCl system on the potential energy surface (PES) of Bian and Werner (Bian, W.; Werner, H. -J., J. Chem. Phys. 2000, 112, 220). A time-dependent wave packet approach was employed to calculate state-to-state reaction probabilities for the exchanged and abstraction channels. The most recent PES for the system has been used in the calculations. Reaction probabilities have also been calculated for several values of the total angular momentum J > 0. Those have then been used to estimate cross sections and rate constants for both channels. The calculated cross sections can be compared with the results of previous quasiclassical trajectory calculations and reaction dynamics experimental on the abstraction channel. In addition, the calculated rate constants are in the reasonably good agreement with experimental measurement.