268 resultados para acetylene reduction assay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd-WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon modified by the reduction of aromatic diazonium derivatives was first used as electrode for the electrochemical stripping analysis of heavy metals. As a model, the glassy carbon electrode was modified with benzoic acid by electrochemical reduction of diazobenzoic acid, and the resulting modified electrodes were used for determination of Cd2+ and Pb2+. The anodic peak currents of cadmium and lead at the benzoic acid-modified glassy carbon electrode are 7.2 and 6 times of that at the bare glassy carbon electrode. A linear response was observed for Pb2+ and Cd2+ in the range of 0.5-50 mu g/l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass spectrometry is not able to differentiate NOx and N2 from other interferences (e.g. CO and C2H4) in the deNOx reactions. In the present study, a quantitative method for analysis of NOx and N2 simultaneously in these reactions with an assisted converter operated at higher temperature under O2-rich condition, which eliminates the interferences, is developed. The NOx conversion from this method is comparable to the one from an Automotive Emission Analyser equipped with NOx electrochemical sensor. Two types of deNOx reactions are tested in terms of selectivity of N2 production. The application of this method is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon black and titanium dioxide supported iron tetraphenylporphyrin (FeTPP/TiO2/C) catalysts for oxygen reduction reaction (ORR) were prepared by sol-gel and precipitation methods followed by a heat-treatment at temperatures of 400-1000 degrees C. The FeTPP/C and TiO2/C were also studied for comparison. The FeTPP/TiO2/C pyrolyzed at 700 degrees C exhibits significantly improved stability while maintaining high activity towards ORR in comparison with the FeTPP/C counterpart. The electrochemical study combined with XRD, XPS, and SEM/EDX analyses revealed that the appropriate dispersion of TiO2 on the surface of FeTPP/TiO2/C catalysts, which depending on heat-treatment temperature, plays a crucial role in determining the activity and stability of catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prominent methanol-tolerant characteristic of the PtCeOx/C electrocatalyst was found during oxygen reduction reaction process. The carbon-supported platinum modified with cerium oxide (PtCeOx/C) as cathode electrocatalyst for direct methanol fuel cells was prepared via a simple and effective route. The synthesized electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. It was found that the cerium oxide within PtCeOx/C present in an amorphous form on the carbon support surface and the PtCeOx/C possesses almost similar disordered morphological structure and slightly smaller particle size compared with the unmodified Pt/C catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemically converted graphene (CCG)/3,4,9,10-perylene tetracarboxylic acid (PTCA)/Au-ionic liquid (Au-IL) composites (CCG/PTCA/Au-IL) have been prepared by a chemical route that involves functionalization of CCG with PTCA followed by deposition of Au-IL. Transmission electron microscopy revealed well-distributed Au with a high surface coverage. The identity of the hybrid material was confirmed through X-ray diffraction and X-ray photoelectron spectroscopy. The CCG/PTCA/Au-IL composites exhibited good electrocatalytic behavior toward oxygen reduction. The results indicate that modification of CCG with Au-IL could play an important role in increasing the electrocatalytic activity of CCG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of monodispersed platinum nanoparticles with average size 2.0 nm stabilized by amino-terminated ionic liquid was demonstrated. The resulting platinum nanoparticles (Pt-IL) retained long-term stability without special protection. The Pt-IL nanoparticles exhibited high electrocatalytic activity toward reduction of oxygen and oxidation of methanol. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirmed that the Pt-IL films could catalyze an almost four-electron reduction of dioxygen to water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In general, the reduction of Eu3+ to Eu2+ in solids needs an annealing Process in a reducing atmosphere. in this paper, it is of great interest and importance to find that the reduction of Eu3+ to Eu2+ can be realized in a series of alkaline-earth metal aluminum silicates MAl2Si2O8 (M = Ca, Sr, Ba) just in air condition. The Eu2+-doped MAl2Si2O8 (M = Ca, Sr, Ba) powder samples were prepared in air atmosphere by Pechini-type sol-gel process. It was found that the strong hand emissions of 4f(6)5d(1)-4f(7) from Eu2+ were observed at 417, 404 and 373 nm in air-annealed CaAl2Si2O8, SrAl2Si2O8 and BaAl2Si2O8, respectively, under ultraviolet excitation although the Eu3+ precursors were employed. In addition, under low-voltage electron beam excitation, Eu2+-doped MAl2Si2O8 also shows strong blue or ultraviolet emission corresponding to 4f(6)5d(1)-4f(7) transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report the effects of ferricyanide on organisms based on the changes in physiological state and morphology of Escherichia coli (E coli) DH 5 alpha after being pretreated by ferricyanide. The impact on bacterial cell growth and viable rate of exposure to different concentrations of ferricyanide was determined, and the morphology change of E. coli was studied by atomic force microscopy (AFM). Finally, recovery test was used to evaluate the recovery ability of injured cells. The results showed that the effects on growth and morphology of E. coli were negligible when the concentration of ferricyanide was below 25.0 mM. While the results showed 50.8% inhibition of growth in the presence of 50.0 mM ferricyanide for 3 h, 89.6% viability was detected by flow cytometry (FCM) assay. AFM images proved that compact patches appeared on the bacterial surface and protected the bacterial viability. Furthermore, the results revealed that deterioration of bacterial surface closely related to the incubation time from 0.5 to 3 h at 100.0 mM ferricyanide. In the recovery test, microbial cell population and dissolved oxygen individually decreased 36.7% and 28.3% with 25.0 mM ferricyanide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work herein reports the approach for the simultaneous determination of heavy metal ions including cadmium (Cd(II)), lead (Pb(II)), and chromium (Cr(VI)) using a bismuth film electrode (BFE) by anodic stripping voltammertry (ASV). The BFE used was plated in situ. Due to the reduction of Cr(VI) with H2O2 in the acid medium, on one hand, the Cr(III) was produced and Cr(VI) was indirectly detected by monitoring the content of Cr(III) using square-wave ASV. On the other hand, Pb(II) was also released from the complex between Pb(II) and Cr(VI). Furthermore, the coexistence of the Cd(II) was also simultaneously detected with Pb(II) and Cr(VI) in this system as a result of the formation of an alloy with Bi. The detection limits of this method were 1.39 ppb for Cd(II), 2.47 ppb for Pb(II) and 5.27 ppb for Cr(VI) with a preconcentration time of 120 s under optimal conditions (S/N = 3), respectively. Furthermore, the sensitivity of this method can be improved by controlling the deposition time or by using a cation-exchange polymer (such as Nafion) modified electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a general method for incorporation of nanoparticles into polyelectrolyte multilayer (PEM) thin films by utilizing the excess charges and associated counterions present in the PEMs. Silver ions were introduced directly into multilayers assembled from poly(diallyldimethylammonium chloride) (PDDA) and poly(styrene sulfonate) (PSS), (PDDA/PSS)(n), by a rapid ion exchange process, which were then converted into silver nanoparticles via in situ reduction to create composite thin films. The size and the content of the nanoparticles in the film call be tuned by adjusting the ionic strength in the polyelectrolyte solutions used for the assembly. Spatial control over the distribution of the nanoparticles in the PEM was achieved via the use of multilayer heterostructure containing PDDA/PSS bilayer blocks assembled at different salt concentrations. Because excess charges and counterions are always present in any PEM, this approach can be applied to fabricate a wide variety of composite thin Films based on electrostatic self-assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple approach combining sonication and sol-gel chemistry was employed to synthesize silica coated carbon nanotube (CNTs) coaxial nanocables. It was found that a homogeneous silica layer can be coated on the surface of the CNTs. This method is simple, rapid, and reproducible. Furthermore, gold nanoparticle supported coaxial nanocables were facilely obtained using amino-functionalized silica as the interlinker. Furthermore, to reduce the cost of Pt in fuel cells, designing a Pt shell on the surface of a noble metal such as gold or silver is necessary. High-density gold/platinum hybrid nanoparticles were located on the surface of I-D coaxial nanocables with high surface-to-volume ratios. It was found that this hybrid nanomaterial exhibits a high electrocatalytic activity for enhancing oxygen reduction (low overpotential associated with the oxygen reduction reaction and almost four-electron electroreduction of dioxygen to water).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas bubble dynamic template, a new green and promising template, can be used to prepare nanostructured materials with different shapes from electrochemical deposition processes. Different morphological platinum nanomaterials have been synthesized by the replacement reaction of the deposited copper nanomaterials which were obtained under negative potential along with H-2 evolution (dynamic template) at a glassy carbon electrode. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical methods were adopted to characterize their structures and properties. The nanomaterials platinum exhibited excellent catalytic activity toward oxygen reduction. The results demonstrated that the strategy is a simple, cost-effective, and potent method to prepare platinum nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a microarray-based surface-enhanced Raman spectroscopic (SERS) assay for detection of kinase functionality and inhibition has been reported. Biotinylated anti-phosphoserinen antibodies mark the phosphorylation and inhibition events and gold nanoparticles are attached to the antibodies by standard avidin-biotin chemistry, followed by silver deposition for SERS signal enhancement. The avidin conjugated fluorescein is used as SERS probe. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP) dependent protein kinase (PKA), its well known substrate, kemptide, and three inhibitors, H89, HA1077, and KN62 have been chosen here to establish the SERS assay. As expected, highly selective inhibition of PKA is demonstrated with the inhibitor H89 and the inhibition assay enable to detect kinase inhibition as well as derive IC50 (half maximal inhibitory concentration) plots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this contribution, we for the first time report the synthesis of raspberry-like hierarchical Au/Pt nanoparticle (NP) assembling hollow spheres (RHAHS) with pore structure and complex morphology through one in situ sacrificial template approach without any post-treatment procedure. This method has some clear advantages including simplicity, quickness, high quality, good reproducibility, and no need of a complex post-treatment process (removing templating). Furthermore, the present method could be extended to other metal-based NP assembling hollow spheres. Most importantly, the as-prepared RHAHS exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR). For instance, the present RHAHS-modified electrode exhibited more positive potential (the half-wave potential at about 0.6 V), higher specific activity, and higher mass activity for ORR than that of commercial platinum black (CPB). Rotating ring-disk electrode (RRDE) voltarnmetry demonstrated that the RHAHS-modified electrode could almost catalyze a four-electron reduction of O-2 to H2O in a 0.5 M air-saturated H2SO4 solution.