165 resultados para YRAST STATES
Resumo:
The alpha-decay half-lives of nuclei in the ground states and Isomeric states have been calculated within the WKB approximation and Royer's formulas. The barrier in the quasimolecular shape path is determined within a generalized liquid drop model (GLDM). in which the centrifugal potential energy has been introduced to study the unfavored a-decay The agreement between the calculated results and experimental data indicates the reliability of studying alpha-decay of isomeric states with the generalized liquid drop model We find that their is no significant difference of preformation probability between Isomeric states and the corresponding ground states generally in favored alpha-decay Additionally. we extended Royer's formulas by taking account of the role of centrifugal harrier to study the unfavored alpha-decay, and some predicts oil the a decay half-lives of Isomers are made Finally. the effects of angular momontum transfer and Q(alpha) on alpha-decay half-life have been discussed Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved
Resumo:
The radiolysis of cysteine under plasma discharge and irradiation of low-energy Ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR In addition, the generation of hydrogen sulfide was also identified The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH3, -COO-) of cysteine. and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation (C) 2010 Elsevier B V All rights reserved.
Resumo:
Two-electron-one-photon (TEOP) M1 and E2 transition energies, line strengths and transition probabilities between the states of the 2p(3) and 2s(2)2p odd configurations for B-like ions with 18 <= Z <= 92 have been calculated using the GRASP2K package based on the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Employing active-space techniques to expand the configuration list, we have systematically considered the valence, core-valence and core-core electron correlation effects. Breit interaction and quantum electrodynamical (QED) effects were also included to correct atomic state wavefunctions and the corresponding energies. Influences of electron correlation, Breit interaction and QED effects on transition energies and line strengths of the TEOP M1 and E2 transitions were analysed in detail. The present results were also compared with other theoretical and experimental values.
Resumo:
通过重离子核反应116Cd(27Al,4n)与在束γ谱的实验技术,对A=130~140核区的奇A核139Pm的高自旋态进行了研究.根据γ-γ符合关系、γ射线的相对强度和各向异性度的测量结果,扩展并更新了139Pm的能级纲图.实验观测到基于πh11/2和πg7/2-[πh11/2]2(或者πd5/2-[πh11/2]2)组态的转动带,利用已有的理论计算结果对这些转动带进行了解释.同时还观测到三个具有很强M1跃迁、旋称劈裂很小的-I=1的带.通过简单分析和系统学比较,指认了它们的组态,发现它们具备磁转动带的特性,很可能是磁转动带.
Resumo:
set of energies at different internuclear distances for the ground electronic state and two excited electronic states of NaH molecule have been calculated using valence internally contracted multireference configuration interaction(MRCI) including Davidson correction and three basis sets. Then, a potential energy curve (PEC) for each state was determined by extrapolating MRCI energies to the complete basis sets limit. Based on the PECs, accurate vibrational energy levels and rotational constants were determined. The computational PECs are were fitted to analytical potential energy functions using the Murrell-Sorbie potential function. Then, accurate spectroscopic parameters were calculated. Compared with experimental results, values obtained with the basis set extrapolation yield a potential energy curve that gives accurate vibrational energy levels, rotational constants and spectroscopic parameters for the NaH molecule. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Agenda 21, the 40-chapter action plan, agreed to by all nations participating in the 1992 Earth Summit represents an ambitious effort to provide policy guidance across the entire spectrum of environment, development, and social issues confronting mankind. In the area of oceans and coasts (Chapter 17 of Agenda 21), the Earth Summit underscored that the management of oceans and coasts should be ‘integrated in content and anticipatory in ambit.’ To assist those responsible for implementing the Earth Summit guidelines on ocean and coastal management, this article first reviews the fundamental shift in paradigm reflected in the Earth Summit agreements as well as the specific recommendations contained in Chapter 17. Next, the article examines the central concept of ‘integrated management,’ noting both its importance and its limits. A general or ‘synthesis’ model of ‘integrated coastal management’ is then presented, addressing such questions as management goals, what is being managed, where, how, and by whom. In a concluding section, methods are proposed whereby the general or ‘synthesis model’ can be tailored to diverse national contexts, involving varying physical, socio-economic, and political conditions.
Resumo:
We studied the self-assembly of polydisperse diblock copolymers under various confined states by Monte Carlo simulation. When the copolymers were confined within two parallel walls, it was found that the ordered strip structures appeared alternately with the increase in wall width. Moreover, the wall width at which the ordered structure appeared tended to increase with an increase in the polydispersity index (PDI). On the other hand, the simulation results showed that the copolymers were likely to form ordered concentric strip structures when they were confined within a circle wall.
Resumo:
By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.
Resumo:
The macroscopic mechanical properties of polyaniline (PANI) lie mainly on two factors, the structure of molecular aggregations of polymers and the mechanical properties of a single polymer chain. The former factor is swell revealed; however, the latter is rarely studied. In this article, we have employed atomic force microscopy-based single-molecule force spectroscopy to investigate the mechanical properties of a kind of water-soluble PANI at a single-molecular level. We have carried out the study comparatively on single-chain-stretching experiments of oxidized, reduced, and doped PANI and obtained a full view of the single-chain elasticity of PANI in all these states. It is found that oxidized and reduced PANI chains are rigid, and the oxidized PANI is more rigid than the reduced PANI. Such a difference in single-chain elasticity can be rationalized by the molecular structures that are composed of benzenoid diamine and quinoid diimine its different proportions. The doped PANI has been found to be more flexible than the oxidized and reduced PANI, and the modified freely jointed chain parameters of doped PANI are similar with those of a common flexible-chain polymer.
Resumo:
The self-assembly of diblock copolymer mixtures (A-b-B/A-b-C or A-b-B/B-b-C mixtures) subjected to cylindrical confinement (two-dimensional confinement) was investigated using a Monte Carlo method. In this study, the boundary surfaces were configured to attract blocks A but repel blocks B and C. Relative to the structures of the individual components, the self-assembled structures of mixtures of the diblock copolymers were more complex and interesting. Under cylindrical confinement, with varying cylinder diameters and interaction energies between the boundary surfaces and the blocks, we observed a variety of interesting morphologies. Upon decreasing the cylinder's diameter, the self-assembled structures of the A(15)B(15)/A(15)C(15) mixtures changed from double-helix/cylinder structures (blocks B and C formed double helices, whereas blocks A formed the outer barrel and inner core) to stacked disk/cylinder structures (blocks B and C formed the stacked disk core, blocks A formed the outer cylindrical barrel), whereas the self-assembled structures of the A(15)B(7)/B7C15 mixtures changed from concentric cylindrical barrel structures to screw/cylinder structures (blocks C formed an inside core winding with helical stripes, whereas blocks A and B formed the outer cylindrical barrels) and then finally to the stacked disk/cylinder structures.
Resumo:
Density functional theory (DFT) electronic structure calculations were carried out to predict the structures and the absorption and emission spectra for porphyrin and a series of carbaporphyrins-carbaporphyrin, adj-dicarbaporphyrin, opp-dicarbaporphyrin, tricarbaporphyrin and tetracarbaporphyrin. The ground- and excited-state geometries were optimized at the B3LYP/6-31g(d) and CIS/6-31g(d) level, respectively. The optimized ground-state geometry and absorption spectra of porphyrin, calculated by DFT and time-dependent DFT (TDDFT), are comparable with the available experimental values. Based on the optimized excited-state geometries obtained by CIS/6-31g(d) method, the emission properties are calculated using TDDFT method at the B3LYP/6-31g(d) level. The effects of the substitution of nitrogen atoms with carbon atoms at the center positions of porphyrin are discussed. The results indicate that the two-pyrrole nitrogens are important to the chemical and physical properties for porphyrin.
Resumo:
The synchronous fluorescence spectra of hemoglobin solutions are reported for the first rime. The main fluorescence peaks observed in the spectra are assigned. The effect of the concentration of hemoglobin solution on the spectra is studied. Characteristic fluorescence peaks due to the dimer and tetramer of hemoglobin molecules are recognized. (C) 1998 Academic Press.
Resumo:
The states of cytochrome C molecules in aquous solution were studied with synchronous fluorescence spectroscopy, It was found that the synchronous fluorescent spectra of cytochrome C were contributed by tyrosine and tryptophan residues separately at Delta lambda = 20 nm and Delta lambda = 80 nm, The peak position in synchronous fluorescent spectra of tyrosine residues in cytochrome C molecule does not change with its concentration, but that of tryptophan residue changes with its concentration, Only one peak at 340.0 nm was observed in the dilute solution of cytochrome C, With increasing the concentration of cytochrome C, a new peak at 304. 0 nm appeared. The peak at 340.0 nm disappeared and only one peak at 304.0 nm was observed at a higher concentration of cytochrome C, It may originate from the change of aggregation states of cytochrome C molecules and it was considered that the peak at 340.0 nm was attributed to the monomer and peak at 304.0 nm was due to the dimmer or oligomers. When urea was added into cytochrome C solution in which both monomer and dimmer or oligomers exist, cytochrome C molecules do not denature in the range of the specific concentrations of urea. The concentration of monomer of cytochrome C molecules increased and that of aggregation slates decreased by adding urea, Therefore, the synchronous fluorescence spectroscopy can be used to identify monomer and aggregation states of cytochrome C molecules.