161 resultados para Variable Velocity
Resumo:
In chemistry for chemical analysis of a multi-component sample or quantitative structure-activity/property relationship (QSAR/QSPR) studies, variable selection is a key step. In this study, comparisons between different methods were performed. These methods include three classical methods such as forward selection, backward elimination and stepwise regression; orthogonal descriptors; leaps-and-bounds regression and genetic algorithm. Thirty-five nitrobenzenes were taken as the data set. From these structures quantum chemical parameters, topological indices and indicator variable were extracted as the descriptors for the comparisons of variable selections. The interesting results have been obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Orthogonal descriptors is a viable method for variable selection, but this method strongly depend on the orthogonalisation ordering of the descriptors. In this paper, we compared the different methods used for order the descriptors. It showed that better results could be achieved with the use of backward elimination ordering. We predicted R-f value of phenol and aniline derivatives by this method, and compared it with classical algorithms such as forward selection, backward elimination, and stepwise procedure. Some interesting hints were obtained.
Resumo:
The dynamic states of cytochrome c multilayers on electrochemically pretreated highly oriented pyrolytic graphite (HOPG) have been studied by in-situ scanning tunnelling microscopy (STM) under potential control of both the tip and the substrate in cytochrome c and phosphate buffer solution. The dynamic characterization of cytochrome c multilayers and relatively stable adsorbed single cytochrome c molecules scattered on HOPG imply that physically adsorbed multilayers were more easily influenced by the STM tip than those of chemically adsorbed single molecules. In-situ STM images of chemically adsorbed cytochrome c molecules with discernible internal structures on HOPG revealed that morphologies of cytochrome c molecules also suffered tip influence; possible tip-sample-substrate interactions have been discussed.
Resumo:
Five new chiral liquid crystal systems induced by intermolecular hydrogen bonding between 4-[(S)-2-chloro-3-methyl]butyroyloxy-4'-stilbazole (MBSB, proton acceptor) and 4-alkoxybenzoic acids (nBA, proton donors) were prepared. Their liquid crystalline properties were investigated by DSC and polarized optical microscopy. Chiral nematic and chiral smectic phases were observed, and the thermal stability of one complex was studied through temperature dependent infrared spectroscopy.
Resumo:
Interpretation of high-resolution two-dimensional (2D) and three-dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low-amplitude reflections, acoustic turbidity and low P-wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate-amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies-change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically-quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10, 351-368.
Resumo:
P wave velocity of the pumice sample from the middle Okinawa Trough and andesite sample from vicinity Yingdao volcanic island, Kyushu Japan were measured at temperature (from room temperature to 1500 C) and pressure (from room pressure to 2.4GPa) using a multi-anvil pressure apparatus called the YJ-3000 press. The measured data shows that at low temperature and low pressure (<1GPa, <800degreesC), the P wave velocity of pumice is lower than that of andesite, while at high temperature and high pressure (>1GPa, >800degreesC) the P wave velocity of pumice and andesite. becomes consistent (5.9km/s). The paper points out that 1GPa/800degreesC is the point of thermodynamic phase transformation Okinawa Trough pumice and vicinity andesite, and the point is deeper than 18km.
Impact of spatial resolution and spatial difference accuracy on the performance of Arakawa A-D grids
Resumo:
This paper alms at illustrating the impact of spatial difference scheme and spatial resolution on the performance of Arakawa A-D grids in physical space. Linear shallow water equations are discretized and forecasted on Arakawa A-D grids for 120-minute using the ordinary second-order (M and fourth-order (C4) finite difference schemes with the grid spacing being 100 km, 10 km and I km, respectively. Then the forecasted results are compared with the exact solution, the result indicates that when the grid spacing is I kin, the inertial gravity wave can be simulated on any grid with the same results from C2 scheme or C4 scheme, namely the impact of variable configuration is neglectable; while the inertial gravity wave is simulated with lengthened grid spacing, the effects of different variable configurations are different. However, whether for C2 scheme or for C4 scheme, the RMS is minimal (maximal) on C (D) grid. At the same time it is also shown that when the difference accuracy increases from C2 scheme to C4 scheme, the resulted forecasts do not uniformly decrease, which is validated by the change of the group A velocity relative error from C2 scheme to C4 scheme. Therefore, the impact of the grid spacing is more important than that of the difference accuracy on the performance of Arakawa A-D grid.
Resumo:
To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid[(1/6)degrees] covering the area from 20degreesS to 50degreesN and from 99degrees to 150degreesE is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current. From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 in has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.
Resumo:
The monthly and annual mean freshwater, heat and salt transport through the open boundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6degrees resolution for the seas adjacent to China and 30 resolution for the global ocean. The model results are in fairly good agreement with the existing estimates based on measurements. The computation shows that the flows passing through the South China Sea contribute volume, heat and salt transport of 5.3 Sv, 0.57 PW and 184 Ggs(-1), respectively (about 1/4) to the Indonesian Throughflow, indicating that the South China Sea is an important pathway of the Pacific to Indian Ocean throughflow. The volume, heat and salt transport of the Kuroshio in the East China Sea is 25.6 Sv, 2.32 PW and 894 Ggs(-1), respectively. Less than 1/4 of this transport passes through the passage between Iriomote and Okinawa. The calculation of heat balance indicates that the South China Sea absorbs net heat flux from the sun and atmosphere with a rate of 0.08 PW, while the atmosphere gains net heat flux from the Baohai, Yellow and East China Seas with a rate of 0.05 PW.
Resumo:
A fine-grid model (1/6degrees) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3degrees) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.
Resumo:
The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure model based on the reasonable model output of the M-2 tide and density residual currents. In the numerical experiments, upwelling motion appears around all the fronts with different velocity structures, accounting for surface cold water around the fronts. The experiments also suggest that the location and formation of fronts are closely related to topography and tidal mixing, as is the velocity structure around the front.
Resumo:
We explore control mechanisms underlying the vertical migration of zooplankton in the water column under the predator-avoidance hypothesis. Two groups of assumptions in which the organisms are assumed to migrate vertically in order to minimize realized or effective predation pressure (type-I) and to minimize changes in realized or effective predation pressure (type-II), respectively, are investigated. Realized predation pressure is defined as the product of light intensity and relative predation abundance and the part of realized predation pressure that really affects organisms is termed as effective predation pressure. Although both types of assumptions can lead to the migration of zooplankton to avoid the mortality from predators, only the mechanisms based on type-II assumptions permit zooplankton to undergo a normal diel vertical migration (morning descent and evening ascent). The assumption of minimizing changes in realized predation pressure is based on consideration of DVM induction only by light intensity and predators. The assumption of minimizing changes in effective predation pressure takes into account, apart from light and predators also the effects of food and temperature. The latter assumption results in the same expression of migration velocity as the former one when both food and temperature are constant over water depth. A significant characteristic of the two type-II assumptions is that the relative change in light intensity plays a primary role in determining the migration velocity. The photoresponse is modified by other environmental variables: predation pressure, food and temperature. Both light and predation pressure are necessary for organisms to undertake DVM. We analyse the effect of each single variable. The modification of the phototaxis of migratory organisms depends on the vertical distribution of these variables. (C) 2001 Academic Press.
Resumo:
本文在分析几种常用的基于编码器测速方法的基础上,提出了一种高性能的自适应速度测量方法。该方法选择一个可变的时间周期和编码器脉冲数来测量单位时间内的编码器脉冲数,再通过简单的计算得到转速的测量值。数字信号处理器(DSP)芯片集成有正交脉冲编码电路,并且数据处理速度快,实时性强。本文中提出的方法在电机控制专用DSP芯片TMS320 LF2407A上进行了实现。实验研究表明,可以在提高低速时的测速准确度的同时,提高系统的响应时间。该方法已经在自主研发的全数字伺服驱动系统中得到了成功应用。
Resumo:
基于超冗余度机械臂的动力学方程 ,提出了一种超冗余度机械臂同时受速度和力矩约束的时间最优轨迹规划方法 .它首先采用 B样条曲线拟合无碰撞离散路径 ,得到由伪位移参数 s表示的超冗余度机械臂连续、光滑运动路径 ,然后对动力学方程和约束方程进行数学变换 ,得到由 s表示的动力学方程和约束方程 ,最后以 s和伪速度 s· 分别作为动态规划的阶段变量和状态变量 ,对超冗余度机械臂进行时间最优轨迹规划 .仿真结果表明 ,所给出的时间最优轨迹规划算法是正确的 ,所采取的解决方法是可行的