329 resultados para Transgenic rice
Resumo:
自发现叶黄素循环具有热耗散的作用后它被引起广泛的关注目前普遍认为叶黄素循环的色素定位于天线色素蛋白复合体上在跨膜质子梯度pH形成后玉米黄质Z和环氧玉米黄质A能够从叶绿素中吸收过多的激发能并以热能的形式耗散到体外从而保护光合器官免受强光的破坏紫黄质脱环氧化酶VDE是叶黄素循环的关键酶在较低的pH条件下它能在数分钟内将紫黄质V转变为Z和A本论文从水稻和菠菜中克隆了编码VDE酶的基因并通过转基因植物进一步研究了叶黄素循环在热耗散方面的作用主要获得了以下结果 首次从两个水稻亚种籼稻和粳稻中克隆了Rvde基因分别命名为iRvde和jRvde的全长cDNA序列分别长1647bp和1887bp两者开放阅读框的同源性为98%与其它已知vde基因的同源性在60以上推导两者均编码446个氨基酸其中转运肽序列长98个氨基酸两者成熟蛋白的氨基酸序列完全相同与已知VDE成熟蛋白的同源性在75%以上其中与小麦的同源性最高达87.4 通过PCR扩增获得了Rvde基因的核基因组DNA序列在它们的编码区中含有4个内含子其长度在jRvde中分别为105bp327bp81bp和69bp而iRvde基因的第2个内含子长425bp与jRvde的第2个内含子差别较大内含子的AT含量为6063%其两端为典型的GT/AG结构 构建了Rvde基因的原核表达载体pET-Rvde在0.4mmol/L IPTG的诱导下该基因能在大肠杆菌BL21(DE3)中大量表达SDS-PAGE和Western杂交表明表达蛋白的分子量约为 43 kDa随着IPTG诱导时间的延长蛋白量逐渐增加诱导4h后它占大肠杆菌总蛋白的25左右吸收光谱差值A502-540随反应的进行逐渐增大反应体系总色素的HPLC分析表明V逐渐降低而Z刚好相反说明表达的蛋白具有与活体VDE酶相同的功能能在体外将V转变为A和Z 从菠菜中克隆了Svde基因并构建了该基因的反义抑制植物表达载体pCB-antiSvde用根癌农杆菌介导法转化烟草获得了大量的转基因植株再生的愈伤组织经GUS染色后呈蓝色PCR扩增潮霉素抗性基因hpt和Svde基因结果显示在转基因植株T0和T1代中都分别扩增出1.0 kb和1.4 kb的目的片段而在未转化的对照植株中没有扩增转基因植株的T0代种子在潮霉素培养基上的萌发数与未萌发数的比值为3:1符合单基因的孟德尔分离规律从T1代转基因植株中筛选出抑制程度较强的一个株系A29Southern杂交结果表明外源Svde基因已整合到烟草的基因组中并且只有一个插入位点通过冻融法从该植株的类囊体中提取VDE酶其酶活性为3.2是对照植株的45.7表明VDE酶受到了抑制荧光动力学及HPLC测定结果显示强光处理后在转基因植株中Z和A的形成较少非光化学淬灭NPQ值较对照低Fv/Fm的下降较对照快表明转基因植株的热耗散能力下降进而说明叶黄素循环具有热耗散的功能 同时还建立了根癌农杆菌介导的水稻遗传转化体系并初步作了转化Svde基因的试验另外还建立了一种适合于筛选转基因植株的DNA微量提取法此方法操作快捷方便一个人在一天内能制备50多个样品100mg的植物鲜样平均可获得40µg的DNA提取的DNA可直接用于PCR反应酶切分析及Southern分析
Resumo:
The mitochondrial DNA of the rice frog, Fejervarya limnocharis (Amphibia, Anura), was obtained using long-and-accurate polymerase chain reaction (LA-PCR) combining with subcloning method. The complete nucleotide sequence (17,717 bp) of mitochondrial genome was determined subsequently. This mitochondrial genome is characterized by four distinctive features: the translocation of ND5 gene, a cluster of rearranged tRNA genes (tRNA(Thr), tRNA(Pro), tRNA(Leu) ((CUN))) a tandem duplication of tRNA(Mer) gene, and eight large 89-bp tandem repeats in the control region, as well as three short noncoding regions containing two repeated motifs existing in the gene cluster of ND5/tRNA(Thr)/tRNA(Pro)/tRNA(Leu)/tRNA(Phe). The tandem duplication of gene regions followed by deletions of supernumerary genes can be invoked to explain the shuffling of tRNAM(Met) and a cluster of tRNA and ND5 genes, as observed in this study. Both ND5 gene translocation and tandem duplication of tRNA(Met) were first observed in the vertebrate mitochondrial genomes. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Background: The emergence of agriculture about 10,000 years ago marks a dramatic change in human evolutionary history. The diet shift in agriculture societies might have a great impact on the genetic makeup of Neolithic human populations. The regionally restricted enrichment of the class I alcohol dehydrogenase sequence polymorphism (ADH1BArg47His) in southern China and the adjacent areas suggests Darwinian positive selection on this genetic locus during Neolithic time though the driving force is yet to be disclosed. Results: We studied a total of 38 populations (2,275 individuals) including Han Chinese, Tibetan and other ethnic populations across China. The geographic distribution of the ADH1B*47His allele in these populations indicates a clear east-to-west cline, and it is dominant in south-eastern populations but rare in Tibetan populations. The molecular dating suggests that the emergence of the ADH1B*47His allele occurred about 10,000 similar to 7,000 years ago. Conclusion: We present genetic evidence of selection on the ADH1BArg47His polymorphism caused by the emergence and expansion of rice domestication in East Asia. The geographic distribution of the ADH1B*47His allele in East Asia is consistent with the unearthed culture relic sites of rice domestication in China. The estimated origin time of ADH1B*47His allele in those populations coincides with the time of origin and expansion of Neolithic agriculture in southern China.
Resumo:
Background. The present study was undertaken to determine the role of preformed and induced anti-non-Gal antibodies in the rejection of hDAF pig-to-baboon kidney xenotransplants after anti-Gal antibody neutralization therapy. Methods. Seven baboons receiv
Resumo:
Gene duplication has been considered the most important way of generating genetic novelties. The subsequent evolution right after gene duplication is critical for new function to occur. Here we analyzed the evolutionary pattern for a recently duplicated s
Resumo:
Background: Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. Results: Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. Conclusion: How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experiencedsub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.
Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome
Resumo:
Understanding the dynamics of eukaryotic transcriptome is essential for studying the complexity of transcriptional regulation and its impact on phenotype. However, comprehensive studies of transcriptomes at single base resolution are rare, even for modern organisms, and lacking for rice. Here, we present the first transcriptome atlas for eight organs of cultivated rice. Using high-throughput paired-end RNA-seq, we unambiguously detected transcripts expressing at an extremely low level, as well as a substantial number of novel transcripts, exons, and untranslated regions. An analysis of alternative splicing in the rice transcriptome revealed that alternative cis-splicing occurred in similar to 33% of all rice genes. This is far more than previously reported. In addition, we also identified 234 putative chimeric transcripts that seem to be produced by trans-splicing, indicating that transcript fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell. Taken together, our data provide extensive evidence that transcriptional regulation in rice is vastly more complex than previously believed.
Resumo:
It has been demonstrated that growth hormone (GH) transgenic fish often posses a trait for fast growth. Here, we investigated the growth of F-4 'all-fish' GH transgenic carp Cyprinus carpio and their serum GH levels for a year. The results showed that F-4 all-fish GH transgenic carp were significantly larger in body mass (c. two-fold, P < 0 center dot 001) and body length (c. 1 center dot 3 fold, P < 0 center dot 001), compared with the non-transgenic group. The discrepancy of serum GH levels between the transgenic carp group and control group is 54 fold, when the water temperature was 12-34 degrees C. When the water temperature decreased to 3 center dot 5 degrees C in January, the discrepancy was 256 fold. The serum GH level of the transgenic group was relatively constant, while that of control varied greatly based on month and water temperature. The changes of growth rates between the transgenic group and the control group were similar for a year. Taken together, the results indicated that F-4 all-fish GH transgenic carp had not only higher and constant serum GH levels but also a significant fast-growing effect, compared with the control. To our knowledge, this is the first report on a one-year investigation of growth trait and serum growth hormone level in F-4 all-fish GH transgenic carp.
Resumo:
Food consumption, number of movements and feeding hierarchy of juvenile transgenic common carp Cyprinus carpio and their size-matched non-transgenic conspecifics were measured under conditions of limited food supply. Transgenic fish exhibited 73 center dot 3% more movements as well as a higher feeding order, and consumed 1 center dot 86 times as many food pellets as their non-transgenic counterparts. After the 10 day experiment, transgenic C. carpio had still not realized their higher growth potential, which may be partly explained by the higher frequency of movements of transgenics and the 'sneaky' feeding strategy used by the non-transgenics. The results indicate that these transgenic fish possess an elevated ability to compete for limited food resources, which could be advantageous after an escape into the wild. It may be that other factors in the natural environment (i.e. predation risk and food distribution), however, would offset this advantage. Thus, these results need to be assessed with caution.
Resumo:
In the interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins have direct antiviral activity and inhibit a wide range of viruses by blocking an early stage of the viral genome replication cycle. However, antiviral activity of piscine Mx remains unclear in vivo. In the present study, an Mx-like gene was cloned, characterized and gene-transferred in rare minnow Gobiocypris rarus, and its antiviral activity was confirmed in vivo. The full length of the rare minnow Mx-like cDNA is 2241 bp in length and encodes a polypeptide of 625 amino acids with an estimated molecular mass of 70.928 kDa and a predicted isoelectric point of 7.33. Analysis of the deduced amino acid sequence indicated that the mature peptide contains an amino-terminal tripartite GTP-binding motif, a dynamin family signature sequence, a GTPase effector domain and two carboxy-terminal leucine zipper motifs, and is the most similar to the crucian carp (Carassius auratus) Mx3 sequence with an identity of 89%. Both P0 and F1 generations of Mx-transgenic rare minnow demonstrated very significantly high survival rate to GCRV infection (P < 0.01). The mRNA expression of Mx gene was consistent with survival rate in F1 generation. The virus yield was also concurrent with survival time using electron microscope technology. Rare minnow has Mx gene(s) of its own but introducing more Mx gene improves their resistance to GCRV. Mx-transgenic rare minnow might contribute to control the GCRV diseases. (C) 2008 Published by Elsevier Ltd.