156 resultados para Tobosa grass.
Resumo:
工程措施和耕作措施是有效实施造林种草的必要条件 ;2 5°以上的陡坡地退耕后主要应作为营造水土保持林灌草的生态保护用地 ;应把天然植被保护、改良放在与退耕还林还草同等重要位置 ;建议将科学技术与专业科技力量直接切入生态环境建设 ,以充分发挥支撑作用
Resumo:
作为综合治理试验示范区 ,燕儿沟流域在水土保持技术措施配置中 ,坚持以土地利用结构调整为中心的综合治理方略 ,贯彻强化基本农田建设、退耕还林 (草 )的指导思想 ,强调降雨就近拦蓄 ,合理利用土地 ,减少水土流失 ,取得最大效益。同时 ,在配置实施过程中兼顾退耕与基本农田建设同步 ,发展粮食与水土保持同步的主导思想 ,探索生态环境建设的合理模式 ,并取得了可喜成效
Resumo:
用理论分析和典型观测的方法研究了人工油松林系统水土保持功能的叠加效应。结果表明 :与荒坡灌草小流域相比 ,人工油松林系统减小净雨作用明显 ;对两次次降水而言 ,人工油松林系统对径流时间的滞后效应各为荒坡灌草的 2 .5倍和 4 .3倍 ;对径流动能的减小效应分别为 2 5 .0倍和 166.4倍 ;对挟沙能力的减小效应分别为 2 4 .4倍和 163 .3倍。人工油松林系统能改良土壤 ,使其抗冲、抗蚀性能提高 ,此种双向作用使人工油松林发挥了良好的水土保持作用。
Resumo:
针对黄土高原半干旱区灌草植被退化严重的关键问题 ,进行了长期的定位研究 ,提出了灌草植被封育、改良、立体配置等快速恢复与重建的技术体系。试验结果表明 :主要草地群落本氏针茅、百里香适宜封育期为 3~ 5a ,产草量可提高 5 1~ 7 5倍。大针茅适宜封育期为 5a ,产草量可提高 1 5~ 5 0倍 ;改良草地最佳组合荒山穴播为本氏针茅 +杂类草、达乌里胡枝子 +本氏针茅群落 ,产草量提高 6 1~ 6 4倍。撂荒地开沟种植为本氏针茅 +冷蒿、本氏针茅 +红豆草、本氏针茅 +达乌里胡枝子群落 ,产草量提高 4 6~ 4 8倍。荒山隔带耕翻种植为芨芨草、本氏针茅 +紫花苜蓿、本氏针茅 +老芒麦、达乌里胡枝子 +本氏针茅群落 ,产草量提高4 5~ 6 5倍 ;灌草立体配置结合工程整地措施 ,建立了以柠条 +芨芨草、沙棘 +草木樨和山桃 +芨芨草为主的集流灌草配置模式 ,现已形成可更新的稳定的灌草群落类型。该体系的组装配套与试验、示范、推广为黄土高原农牧交错区灌草植被的快速恢复提供了重要的科学依据。
Resumo:
NDVI是区域土壤侵蚀评价的最佳植被因子。基于遥感影像TM数据提取了NDVI值并将其与土地利用信息同时集成于土壤侵蚀图的每个图斑,建立了包含多种因子的空间数据库。通过每个图斑林草地面积百分比和NDVI值的统计分析,建立了NDVI与植被盖度的线性关系。多重因子数据库和NDVI-植被盖度关系,可以为区域土壤侵蚀定量评价提供支持。
Resumo:
Afforestation in China's subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests, plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover, we investigated SOC and its stable C isotope (delta C-13) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C, delta C-13 and total nitrogen. Similarly to the vertical distribution of SOC in natural forests, SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC delta C-13 composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass C-13 composition. Soil profiles with a change in photosynthetic pathway had a more complex C-13 isotope composition distribution. During the 20 years after plantation establishment, the soil organic matter sources influenced both the delta C-13 distribution with depth, and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.
Resumo:
Vegetation cover plays an important role in the process of evaporation and infiltration. To explore the relationships between precipitation, soil water and groundwater in Taihang mountainous region, China, precipitation, soil water and water table were observed from 2004 to 2006, and precipitation, soil water and groundwater were sampled in 2004 and 2005 for oxygen-18 and deuterium analysis at Chongling catchment. The soil water was sampled at three sites covered by grass (Carex humilis and Carex lanceolata), acacia and arborvitae respectively. Precipitation is mainly concentrated in rainy seasons and has no significant spatial variance in study area. The stable isotopic compositions are enriched in precipitation and soil water due to the evaporation. The analysis of soil water potential and isotopic profiles shows that evaporation of soil water under arborvitae cover is weaker than under grass and acacia, while soil water evaporation under grass and acacia showed no significant difference. Both delta O-18 profiles and soil water potential dynamics reveal that the soil under acacia allows the most rapid infiltration rate, which may be related to preferential flow. In the process of infiltration after a rainstorm, antecedent water still takes up over 30% of water in the topsoil. The soil water between depths of 0-115 cm under grass has a residence time of about 20 days in the rainy season. Groundwater recharge from precipitation mainly occurs in the rainy season, especially when rainstorms or successive heavy rain events happen.
Resumo:
The compatibilization effect of poly(styrene-b-2-ethyl-2-oxazoline) diblock copolymer, P(S-b-EOx), on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(ethylene-co-acrylic acid) (EAA) is examined in terms of phase structure and thermal, rheological and mechanical properties, and its compatibilizing mechanism is investigated by Fourier-transform infrared spectroscopy. The block copolymer, synthesized by a mechanism transformation copolymerization, is used in solution blending of PPO/EAA. Scanning electron micrographs show that the blends exhibit a more regular and finer dispersion on addition of a small amount of P(S-b-EOx). Thermal analysis indicates that the grass transition of PPO and the lower endothermic peal; of EAA components become closer on adding P(S-b-EOx), and the added diblock copolymer is mainly located at the interface between the PPO and EAA phases. The interfacial tension estimated by theological measurement is significantly reduced on addition of a small amount of P(S-b-EOx). The tensile strength and elongation at break increase with the addition of the diblock copolymer for PPO-rich blends, whereas the tensile strength increases but the elongation at break decreases for EAA-rich blends. This effect is interpreted in terms of interfacial activity and the reinforcing effect of the diblock copolymer, and it is concluded that the diblock copolymer plays a role as an effective compatibilizer for PPO/EAA blends. The specific interaction between EAA and polar parts of P(S-b-EOx) is mainly hydrogen bonding. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Elemental (TOC, TN, C/N) and stable carbon isotopic (delta(13)C) compositions and n-alkane (nC(16-38)) concentrations were measured for Spartina alterniflora, a C-4 marsh grass, Typha latifolia, a C-3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. delta(13)C values of organic matter preserved in the upper fresh water site sediment were more negative (-23.0+/-0.3) as affected by the C-3 plants than the values of organic matter preserved in the sediments of middle (-18.9+/-0.8) and mud flat sites (-19.4+/-0.1) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC(21) to nC(33) long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC(29) was the most abundant homologue in all samples measured. Both delta(13)C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper studied the reproductive strategies of Kobresia humilis in alpine meadow about its sexual reproduction ,vegetative reproduction and reproductive efforts respectively. The results show that the seed output of Kobresia humilis is 715. 5per unit (m2) . The germination is above 60 % in fit condition ,while only about 3 % in field. There is only 16. 13 % seed which get into seed bank and remain vitality till grass greening. So the seedling is only 3. 46 per unit (m2) in field.But the new ramets of Kobresia humilis are 711. 34 unit (m2 ) from vegetative reproduction. In addition ,vegetative reproductive effort is more than sexual reproductive effort . It constitutes 93. 5 % of all reproductive efforts. Therefore ,the main reproductive strategy of Kobresia humilis is vegetative reproduction ,and sexual reproduction is secondary in alpine condition.
Resumo:
For the first time to our knowledge, we report here methane emissions by plant communities in alpine ecosystems in the Qinghai-Tibet Plateau. This has been achieved through long-term field observations from June 2003 to July 2006 using a closed chamber technique. Strong methane emission at the rate of 26.2 +/- 1.2 and 7.8 +/- 1.1 mu g CH4 m(-2) h(-1) was observed for a grass community in a Kobresia humilis meadow and a Potentilla fruticosa meadow, respectively. A shrub community in the Potentilla meadow consumed atmospheric methane at the rate of 5.8 +/- 1.3 mu g CH4 m(-2) h(-1) on a regional basis; plants from alpine meadows contribute at least 0.13 Tg CH4 yr(-1) in the Tibetan Plateau. This finding has important implications with regard to the regional methane budget and species-level difference should be considered when assessing methane emissions by plants.
Resumo:
There is a need for methodology to warm open-field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45 degrees from horizontal and combining six of them in a hexagonal array, good uniformity of warming was achieved across 3-m-diameter plots. Moreover, there do not appear to be obstacles (other than financial) to scaling to larger plots. The efficiency [eta(h) (%); thermal radiation out per electrical energy in] of these heaters was higher than that of the heaters used in most previous infrared heater experiments and can be described by: eta(h) = 10 + 25exp(-0.17 u), where u is wind speed at 2 m height (m s(-1)). Graphs are presented to estimate operating costs from degrees of warming, two types of plant canopy, and site windiness. Four such arrays were deployed over plots of grass at Haibei, Qinghai, China and another at Cheyenne, Wyoming, USA, along with corresponding reference plots with dummy heaters. Proportional integral derivative systems with infrared thermometers to sense canopy temperatures of the heated and reference plots were used to control the heater outputs. Over month-long periods at both sites, about 75% of canopy temperature observations were within 0.5 degrees C of the set-point temperature differences between heated and reference plots. Electrical power consumption per 3-m-diameter plot averaged 58 and 80 kW h day(-1) for Haibei and Cheyenne, respectively. However, the desired temperature differences were set lower at Haibei (1.2 degrees C daytime, 1.7 degrees C night) than Cheyenne (1.5 degrees C daytime, 3.0 degrees C night), and Cheyenne is a windier site. Thus, we conclude that these hexagonal arrays of ceramic infrared heaters can be a successful temperature free-air-controlled enhancement (T-FACE) system for warming ecosystem field plots.
Resumo:
Stable nitrogen isotope signatures of major sources of mineral nitrogen ( mineralization of soil organic nitrogen, biological N-2 fixation by legumes, annual precipitation and plant litter decomposition) were measured to relatively define their individual contribution to grass assimilation at the Haibei Alpine Meadow Ecosystem, Qinghai, China. The results indicated that delta N-15 values (- 2.40 parts per thousand to 0.97 parts per thousand) of all grasses were much lower than those of soil organic matter (3.4 +/- 0.18 parts per thousand) and mineral nitrogen ( ammonium and nitrate together,7.8 +/- 0.57 parts per thousand). Based on the patterns of stable nitrogen isotopes, soil organic matter (3.4 +/- 0.18 parts per thousand), biological N-2 fixation (0 parts per thousand), and precipitation (- 6.34 +/- 0.24 parts per thousand) only contributed to a small fraction of nitrogen requirements of grasses, but plant litter decomposition (- 1.31 +/- 1.01 parts per thousand) accounted for 67%.
Resumo:
Livestock grazing has long been the most widespread land use on the Qinghai-Tibet Plateau, one of the world's highest ecosystems. However, there has been increasing concern during recent decades because of the rapid increase in livestock numbers. To assess the possible influences of grazing on the vast grassland, a long-term grazing experiment in a shrub meadow on the northern Qinghai-Tibet Plateau was carried out. The experiment included five treatments with different stocking rates and one non-grazing (N) treatment. After 17 years of grazing, treatment differences were clear. The species composition differed markedly between grazing intensities, with a decrease in palatable grass species and an increase in unpalatable forbs at higher grazing intensities. The species richness and species diversity, however, were not significantly different between treatments. Vegetation height decreased significantly at higher grazing intensities. Total above,ground biomass declined considerably and the biomass of forbs increased significantly under the higher grazing intensities. The amount of litter was significantly lower under the higher grazing intensities. The results suggest that long-term grazing alters the species composition, vegetation height and biomass production of the alpine grassland ecosystem without significantly changing species richness.
Resumo:
Grassland degradation is widespread and severe on the Tibet Plateau. To explore management approaches for sustainable development of degraded and restored ecosystems, we studied the effect of land degradation on species composition, species diversity, and vegetation productivity, and examined the relative influence of various rehabilitation practices (two seeding treatments and a non-seeded natural recovery treatment) on community structure and vegetation productivity in early secondary succession. The results showed: (1) All sedge and grass species of the natural steppe meadow had disappeared from the severely degraded land. The above-ground and root biomass of severely degraded land were only 38 and 14.7%, respectively, of those of the control. So, the original ecosystem has been dramatically altered by land degradation on alpine steppe meadow. (2) Seeding measures may promote above-ground biomass, particularly grass biomass, and ground cover. Except for the grasses seeded, however, other grass and sedge species did not occur after seeding treatments in the sixth year of seeding. Establishment of grasses during natural recovery treatment progressed slowly compared with during seeding treatments. Many annual forbs invaded and established during the 6 years of natural recovery. In addition, there was greater diversity after natural recovery treatment than after seeding treatments. (3) The above-ground biomass after seeding treatment and natural recovery treatment were 114 and 55%, respectively, of that of the control. No significant differences in root biomass occurred among the natural recovery and seeded treatments. Root biomass after rehabilitation treatment was 23-31% that of the control.