147 resultados para TG ENTHALPY RELAXATION
Resumo:
The correlation between mechanical relaxation and ionic conductivity was investigated in a two-component epoxy network-LiClO4 electrolyte system. The network was composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG). The effects of salt concentration, molecular weight of PEG in DGEPEG and the proportion of DGEPEG (1000) in DGEPEG/TGEG ratio on the ionic conductivity and the mechanical relaxation of the system were studied. It was found that, among the three influential factors, the former reinforces the network chains, reduces the free volume fraction and thus increases the relaxation time of the segmental motion, which in turn lowers the ionic conductivity of the specimen. Conversely, the latter two increase the free volume and thus the chain flexibility, showing an opposite effect. From the iso-free-volume plot of the shift factor log at and reduced ionic conductivity, it is noted that the plot can be used to examine the temperature dependence of segmental mobility and seems to be useful to judge whether the incorporated salt has been dissociated completely. Besides, the ionic conductivity and relaxation time at constant reference temperature are linearly correlated with each other in all the three cases. This result gives an additional experimental confirmation of the coordinated motion model of the ionic hopping with the moving polymer chain segment, which is generally used to explain the ionic conduction in non-glassy amorphous polymer electrolytes.
Resumo:
Shrinkage, retractive stress, and infrared dichroism of the drawn low-density polyethylene (LDPE) as-drawn and irradiated by Co-60-ray have been measured under different annealing conditions. The shrinkage and the disorientation of the irradiated sample was undergone more rapidly than that of unirradiated one as the temperature was continuously increased, surpassing a certain value, and a higher degree of shrinkage and disorientation was achieved finally for the irradiated sample when the samples were annealed with free ends. For the samples heated isothermally with fixed ends, the retractive stress went through a maximum and then attenuated to a limited value, and the degree of such a stress attenuation for the unirradiated sample was much more than that for the irradiated sample. These results show that the taut tie molecules (TTMs) in drawn PE can relax by the pulling of chain segments out of crystal blocks that they anchored in at elevated temperatures higher than the a transition and also by the displacing of microfibrils if the samples were annealed with free ends. The cross-links produced by irradiation prohibit the former process. It was further observed that the dependence of the average extinction coefficient of the band at 2016 cm-1 on that of the band at 1894 cm-1 is related to irradiation and annealing conditions, which has also been explained by the relaxation of TTMs and the function of irradiation-induced cross-linking on the relaxation.
Resumo:
利用具有非线性光学活性的对硝基苯胺掺杂高玻璃化转变温度的聚芳醚砜(PES-C)和聚芳醚酮(PEK-C),得到了两种掺杂含量较高的掺杂型非线性光学聚合物体系。电晕极化表明较高的取向和较慢的松驰。
Resumo:
A series of polyimides with different structures have been synthesized and studied by dynamic mechanical analysis. The results obtained indicate that the beta relaxation in polyimides is related to the rotation of rigid segment(s) of p-phenylene and imide groups around 'hinges' such as -O-, -CH2- and so on in diamines. It is noticed that two kinds of polyimides both with [GRAPHICS] imide groups have verv weak beta relaxation below the glass transition temperature. This phenomenon is due to the fact that the configuration of chains with the above imide groups hinders the rotation of the rigid segments in the chains.
Resumo:
The crystal structure of erbium (III) complex of benzene acetic acid is reported. The complex crystallizes in the monoclinic space group P2(1)/a with a = 0,9008(3)nm, b=1.4242(5) nm, c=1.8437(7) nm, beta=98.80(3)degrees, V = 2.337(1) nm(3), Z = 4. The mechanism of thermal decomposition of complex has been studied by TG-DTG-DTA. The activation energy for dehydration reaction has been calculated by Freeman Carroll method. The enthalpy change for dehydration and phase change process has been determined.
Resumo:
The heat capacity of nanostructured amorphous SiO2 (na-SiO2) has been measured by adiabatic calorimetric method over the temperature range 9-354 K. TG and differential scanning calorimeter (DSC) were also employed to determine the thermal stability. Glass transition temperature (T-g) for the two same grain sizes with different specific surface of naSiO(2) samples and one coarse-grained amorphous SiO2 (ca-SiO2) sample were determined to be 1377, 1397 and 1320 K, respectively. The low temperature experimental results show that there are significant heat capacity (C-P) enhancements among na-SiO2 samples and ca-SiO2. Entropy, enthalpy, Gibbs free energy and Debye temperature (theta (D)) were obtained based on the low temperature heat capacity measurement of na-SiO2. The Cp enhancements of na-SiO2 were discussed in terms of configurational and vibrational entropy. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Carbonaceous deposits formed during the temperature-programmed surface reaction (TPSR) of methane dehydro-aromatization (MDA) over Mo/HZSM-5 catalysts have been investigated by TPH, TPCO2 and TPO, in combination with thermal gravimetric analysis (TG). The TPO profiles of the coked catalyst after TPSR of MDA show two temperature peaks: one is at about 776 K and the other at about 865 K. The succeeding TPH experiments only resulted in the diminishing of the area of the high-temperature peak, and had no effect on the area of the low-temperature peak. On the other hand, the TPO profiles of the coked catalyst after succeeding TPCO2 experiments exhibited obvious reduction in the areas of both the high-and low-temperature peaks, particularly in the area of the low-temperature peak. On the basis of TPSR, TPR and TPCO2 experiments and the corresponding TG analysis, quantitative analysis of the coke and the kinetics of its burning-off process have been studied. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Fenoxycarb was synthesized and its heat capacities were precisely measured with an automated adiabatic calorimeter over the temperature range from 79 to 360 K. The sample was observed to melt at (326.31 +/- 0.14) K. The molar enthalpy and entropy of fusion as well as the chemical purity of the compound were determined to be (26.98 +/- 0.04) kJ-mol(-1), (82.69 +/- 0.09) J-K-1-mol(-1) and 99.53% +/- 0.01%, respectively. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The extrapolated melting temperature for the absolutely pure compound obtained from fractional melting experiments was (326.62 +/- 0.06) K. Further research on the melting process of this compound was carried out by means of differential scanning calorimetry technique. The result was in agreement with that obtained from the measurements of heat capacities.