165 resultados para Symmetric element


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-field nuclear magnetic resonance (NMR) spectra can be used for the rapid multicomponent analysis in small amounts of biological fluids. In this paper, the effect of La (NO3)(3) on the rats' metabolism in urine was investigated by H-1 NMR analysis. The experimental groups of wistar rats were injected intraperitoneally with La(NO3)(3) at doses of 0.2, 2.0, 10 and 20mg/kg body weight. The remarkable variation of low molecular weight metabolites in urine has been identified by H-1 NMR spectra, in which dimethylamine, N, N-dimethylglycine, urea, alpha -ketoglutarate, trimethylamine N-oxide, succinate, citrate and amino acids have been suggested as NMR markers for renal damage and ethanol, lactate, taurine as the markers for liver damage. This work may assess its possible use in the early detection of biochemical changes associated with Rare Earth induced kidney and liver dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of YbCl3 with 3 equimolar CpNa (Cp = cyclopentadienide) in THF, followed by treatment with trans-(+/-)-N,N'-bis(salicylidene)-1,2-cyclohexanediamine led to the isolation of first mono(cyclopentadienyl) lanthanide Schiff base complex, [(eta(5)-C5H5)Yb(mu-OC20H20N2O)](2) (mu-THF)(THF) (1). The molecular structure of 1 shows that it is a dimer in which the two [(eta(5)-C5H5)Yb(mu-OC20H20N2O)] units connecting via a bridging THF oxygen and two bridging oxygen atoms from Schiff base ligands. (C) 1998 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cp2SmCl(THF) reacts with 0.5 equivalent disodium salts of trans-(+/-)-N,N'-bis(salicylidene)-1,2-cyclohexanediamine give the title complex [(eta(5)-C5H5)Sm(mu-OC20H20N2O)](2)(mu-THF)(THF)(2) (1). X-ray crystal determination shows that the molecule is a dimer, in which two (eta(5)C(5)H(5))Sm(mu-OC20H20N2O) units are connected via a THF oxygen and two bridging oxygen atoms of Schiff base ligands. The average Sm-C distance is 2.78(7) Angstrom, while those of Sm-O (bridging THF oxygen) and Schiff base oxygens are 2.79(3) and 2.43(4) Angstrom; respectively. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine tetrabasic tungstovanadophosphate heteropoly rare earth element complexes with Dawson structure were synthesized. Their general molecular formulas are K15H4[Ln . (P2W16VO61)(2)] . xH(2)O(Ln = La3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Yb3+). Their structures and properties were investigated by IR, UV, NMR, ESR, XRD, TG-DTA. The results showed that the series of complexes have the same structure as K-16[Ce(P2W17O61)(2)] . 50H(2)O. At the same time, the catalytic activity of the complexes for H2O2-decomposition was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct electrochemistry of cytochrome c was studied at nanometer-sized rare earth element dioxide particle-modified gold electrodes. It was demonstrated that rare earth element oxides can accelerate the electrochemical reaction of cytochrome c and the reversibility of the electrochemical reaction of cytochrome c was related to the size of rare earth element oxide particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peridotites from the southern Mariana forearc were sampled on the landward trench slope of the Izu-Bonin-Mariana (IBM) subduction zone by dredging. These mantle wedge peridotites underwent hydration by fluid derived from a dehydrated descending slab, and later interacted with seawater after emplacement at or near the seafloor. This study investigates how these two different rock-fluid interaction processes influenced trace element distribution in the southern Mariana forearc peridotites. We measured trace element concentrations of peridotites from the southern Mariana forearc. The southern Mariana forearc peridotites are characterized by a distinct seawater-like REE pattern with an obvious negative Ce anomaly, and La shows good correlation with other REEs (except Ce). In addition, there is a great enrichment of U, Pb, Sr and Li elements, which show a distinct positive anomaly relative to adjacent elements in the multi-element diagram. For the seawater-like REE pattern, we infer that REEs are mainly influenced by seawater during peridotite-seawater interactions after their emplacement at or near the seafloor, by serpentinization or by marine weathering. Furthermore, the anomalous behavior of Ce, compared with other rare earth elements in these samples, may indicate that they have undergone reactions involving Ce (IV) when the peridotites interacted with seawater. Positive U, Pb, Sr and Li anomalies are inferred to be related to seawater and/or fluids released during dehydration of the subducting slab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geochemical and U-series isotopic characteristics of hydrothermal sulfide samples from the Jade site (127A degrees 04.5'E, 27A degrees 15'N, water depth 1300-1450 m) at Jade site in the Okinawa Trough were analyzed. In the hydrothermal sulfide samples bearing sulfate (samples HOK1 and HOK2), the LREEs are relatively enriched. All the hydrothermal sulfide samples except HOK1 belong to Zn-rich hydrothermal sulfide. In comparison with Zn-rich hydrothermal sulfides from other fields, the contents of Zn, Pb, Ag, Cd, Au and Hg are higher, the contents of Fe, Al, Cr, Co, Ni, Sr, Te, Cs, Ti and U lower, and the Pb-210 radioactivity ratios and Pb-210/Pb ratios very low. In the hydrothermal sulfide mainly composed of sphalerite, the correlations between rare elements Hf and U, and Hf and Mn as well as that between dispersive elements Ga and Zn, are strongly positive; also the contents of Au and Ag are related to Fe-sulfide, because the low temperature promotes enrichment of Au and Ag. Meanwhile, the positive correlations between Fe and Bi and between Zn and Cd are not affected by the change of mineral assemblage. Based on the Pb-210/Pb ratios of hydrothermal sulfide samples (3.99x10(-5)-5.42x10(-5)), their U isotopic composition (U-238 content 1.15-2.53 ppm, U-238 activity 1.07-1.87 dpm/g, U-234 activity 1.15-2.09 dpm/g and U-234/U-238 ratio 1.07-1.14) and their Th-232 and Th-230 contents are at base level, and the chronological age of hydrothermal sulfide at Jade site in the Okinawa Trough is between 200 and 2000 yr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modal composition and mineral composition of harzburgites from the southern Mariana fore-arc show that they are highly refractory. There are a few modals of clinopyroxene (0.7 vol %) in harzburgites. Two types of amphibole are found in these harzburgites: magnesiohornblende accompanied by clinopyroxene with higher Al2O3 content (> 7%) and lower Mg-#; tremolite around orthopyroxene with lower Al2O3 content (< 2%) and higher Mg-#. Trace element of clinopyroxene and two types of amphibole are analyzed. Primitive mantle-normalised REE patterns for clinopyroxene and magnesio hornblende are very similar and both show HREE enrichment relative to LREE, while magnesiohornblende has higher content of trace element than clinopyroxene. The contents of trace element of tremolite are much lower than those of magnesiohornblende. Clinopyroxene shows enrichment of most of the trace element except HREE and Ti relative to clinopyroxene in abyssal peridotites. Petrology and trace element characteristic of clinopyroxene and two types of amphibole indicate that southern Mariana fore-arc harzburgites underwent two stages of metasomatism. The percolation of a hydrous melt led to mobility of Al, Ca, Fe, Mg, Na, and large amounts of trace element. LILE and LREE can be more active in hydrous melt than HREE and Ti, and the activities of most of the trace element except some of LILE are influenced by temperature and pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh basaltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cumulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on Th-230-U-238 disequilibrium and major element data from mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs), this study calculates mantle melting parameters, and thereby investigates the origin of Th-230 excess. (Th-230/U-238) in global MORBs shows a positive correlation with Fe-8, P (o), Na-8, and F-melt (Fe-8 and Na-8 are FeO and Na2O contents respectively after correction for crustal fractionation relative to MgO = 8 wt%, P (o)=pressure of initial melting and F (melt)=degree of melt), while Th-230 excess in OIBs has no obvious correlation with either initial mantle melting depth or the average degree of mantle melting. Furthermore, compared with the MORBs, higher (Th-230/U-238) in OIBs actually corresponds to a lower melting degree. This suggests that the Th-230 excess in MORBs is controlled by mantle melting conditions, while the Th-230 excess in OIBs is more likely related to the deep garnet control. The vast majority of calculated initial melting pressures of MORBs with excess Th-230 are between 1.0 and 2.5 GPa, which is consistent with the conclusion from experiments in recent years that D (U)> D (Th) for Al-clinopyroxene at pressures of > 1.0 GPa. The initial melting pressure of OIBs is 2.2-3.5 GPa (around the spinel-garnet transition zone), with their low excess Ra-226 compared to MORBs also suggesting a deeper mantle source. Accordingly, excess Th-230 in MORBs and OIBs may be formed respectively in the spinel and garnet stability field. In addition, there is no obvious correlation of K2O/TiO2 with (Th-230/U-238) and initial melting pressure (P (o)) of MORBs, so it is proposed that the melting depth producing excess Th-230 does not tap the spinel-garnet transition zone. OIBs and MORBs in both (Th-230/U-238) vs. K2O/TiO2 and (Th-230/U-238) vs. P (o) plots fall in two distinct areas, indicating that the mineral phases which dominate their excess Th-230 are different. Ce/Yb-Ce curves of fast and slow ridge MORBs are similar, while, in comparison, the Ce/Yb-Ce curve for OIBs shows more influence from garnet. The mechanisms generating excess Th-230 in MORBs and OIBs are significantly different, with formation of excess Th-230 in the garnet zone only being suitable for OIBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical analysis of galvanic corrosion of hot-dip galvanized steel immersed in seawater was presented. The analysis was based on the boundary element methods (BEMs) coupled with Newton-Raphson iterative technique to treat the nonlinear boundary conditions, which were determined by the experimental polarization curves. Results showed that galvanic current density concentrates on the boundary of steel substrate and zinc coating, and the sacrificial protection of zinc coating to steel substrate results in overprotection of steel cathode. Not only oxygen reduction but also hydrogen reduction could occur as cathode reactions, which probably led up to the adsorption and absorption of hydrogen atoms. Flat galvanized steel tensile sample shows a brittle behavior similar to hydrogen embrittlement according to the SSRT (show strain rate test) in seawater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development of oil/gas seismic exploration, seismic survey for fracture/porosity type reservoir is becoming more and more important. As for China, since it has over 60% store of low porosity and low permeability oil/gas reservoir, it’s more urgent to validly describe fracture/porosity type oil/gas trap and proposing the related, developed seismic technique. To achieve mapping fracture/porosity region and its development status, it demands profound understanding of seismic wave propagation discipline in complex fractured/pored media. Meanwhile, it has profound scientific significance and applied worth to study forward modeling of fracture/porosity type media and pre-stacked reverse time migration. Especially, pre-stacked reverse-time migration is the lead edge technique in the field of seismology and seismic exploration. In this paper, the author has summarized the meaning, history and the present state of numerical simulation of seismic propagation in fractured/pored media and seismic exploration of fractured/pored reservoirs. Extensive Dilatancy Anisotropy (EDA) model is selected as media object in this work. As to forward modeling, due to local limitation of solving spatial partial derivative when using finite-difference and finite-element method, the author turns to pseudo-spectral method (PSM), which is based on the global characteristic of Fourier transform to simulate three-component elastic wave-field. Artifact boundary effect reduction and simulation algorithm stability are also discussed in the work. The author has completed successfully forward modeling coding of elastic wave-field and numerical simulation of two-dimensional and three-dimensional EDA models with different symmetric axis. Seismic dynamic and kinematical properties of EDA media are analyzed from time slices and seismic records of wave propagation. As to pre-stacked reverse-time migration for elastic wave-field in fractured/pored media, based on the successful experience in forward modeling results with PSM, the author has studied pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field in two dimensional EDA media induced by preferred fracture/pore distribution. At the same time, different image conditions will bring up what kind of migration result is detailed in this paper. The author has worded out software for pre-stacked reverse-time depth-domain migration of elastic wave-field in EDA media. After migration processing of a series of seismic shot gathers, influences to migration from different isotropic and anisotropy models are described in the paper. In summary, following creative research achievements are obtained:  Realizing two-dimensional and three-dimensional elastic wave-field modeling for fractured/pored media and related software has been completed.  Proposed pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field.  Through analysis of the seismic dynamic and kinematical properties of EDA media, the author made a conclusion that collection of multi-component seismic data can provide important data basis for locating and describing the fracture/pore regions and their magnitudes and the preferred directions.  Pre-stacked reverse-time depth-domain migration technique has the ability to reconstruct complex geological object with steep formations and tilt fracture distribution. Neglecting seismic anisotropy induced by the preferred fracture/pore distribution, will lead to the disastrous imaging results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large earthquakes, such as the Chile earthquake in 1960 and the Sumatra-Andaman earthquake on Dec 26, 2004 in Indonesia, have generated the Earth’s free oscillations. The eigenfrequencies of the Earth’s free oscillations are closely related to the Earth’s internal structures. The conventional methods, which mainly focus on calculating the eigenfrequecies by analytical ways, and the analysis on observations can not easily study the whole processes from earthquake occurrence to the Earth’s free oscillation inspired. Therefore, we try to use numerical method incorporated with large-scale parallel computing to study on the Earth’s free oscillations excited by giant earthquakes. We first give a review of researches and developments of the Earth’s free oscillation, and basical theories under spherical coordinate system. We then give a review of the numerical simulation of seismic wave propagation and basical theories of spectral element method to simulate global seismic wave propagation. As a first step to study the Earth’s free oscillations, we use a finite element method to simulate the propagation of elastic waves and the generation of oscillations of the chime bell of Marquis Yi of Zeng, by striking different parts of the bell, which possesses the oval crosssection. The bronze chime bells of Marquis Yi of Zeng are precious cultural relics of China. The bells have a two-tone acoustic characteristic, i.e., striking different parts of the bell generates different tones. By analysis of the vibration in the bell and the spectrum analysis, we further help the understanding of the mechanism of two-tone acoustic characteristics of the chime bell of Marquis Yi of Zeng. The preliminary calculations have clearly shown that two different modes of oscillation can be generated by striking different parts of the bell, and indicate that finite element numerical simulation of the processes of wave propagation and two-tone generation of the chime bell of Marquis Yi of Zeng is feasible. These analyses provide a new quantitative and visual way to explain the mystery of the two-tone acoustic characteristics. The method suggested by this study can be applied to simulate free oscillations excited by great earthquakes with complex Earth structure. Taking into account of such large-scale structure of the Earth, small-scale low-precision numerical simulation can not simply meet the requirement. The increasing capacity in high-performance parallel computing and progress on fully numerical solutions for seismic wave fields in realistic three-dimensional spherical models, Spectral element method and high-performance parallel computing were incorporated to simulate the seismic wave propagation processes in the Earth’s interior, without the effects of the Earth’s gravitational potential. The numerical simulation shows that, the results of the toroidal modes of our calculation agree well with the theoretical values, although the accuracy of our results is much limited, the calculated peaks are little distorted due to three-dimensional effects. There exist much great differences between our calculated values of spheroidal modes and theoretical values, because we don’t consider the effect the Earth’ gravitation in numerical model, which leads our values are smaller than the theoretical values. When , is much smaller, the effect of the Earth’s gravitation make the periods of spheroidal modes become shorter. However, we now can not consider effects of the Earth’s gravitational potential into the numerical model to simulate the spheroidal oscillations, but those results still demonstrate that, the numerical simulation of the Earth’s free oscillation is very feasible. We make the numerical simulation on processes of the Earth’s free oscillations under spherically symmetric Earth model using different special source mechanisms. The results quantitatively show that Earth’s free oscillations excited by different earthquakes are different, and oscillations at different locations are different for free oscillation excited by the same earthquake. We also explore how the Earth’s medium attenuation will take effects on the Earth’s free oscillations, and take comparisons with the observations. The medium attenuation can make influences on the Earth’s free oscillations, though the effects on lower-frequency fundamental oscillations are weak. At last, taking 2008 Wenchuan earthquake for example, we employ spectral element method incorporated with large-scale parallel computing technology to investigate the characteristics of seismic wave propagation excited by Wenchuan earthquake. We calculate synthetic seismograms with one-point source model and three-point source model respectively. Full 3-D visualization of the numerical results displays the profile of the seismic wave propagation with respect to time. The three-point source, which was proposed by the latest investigations through field observation and reverse estimation, can better demonstrate the spatial and temporal characteristics of the source rupture processes than one-point source. Primary results show that those synthetic signals calculated from three-point source agree well with the observations. This can further reveal that the source rupturing process of Wenchuan earthquake is a multi-rupture process, which is composed by at least three or more stages of rupture processes. In conclusion, the numerical simulation can not only solve some problems concluding the Earth’s ellipticity and anisotropy, which can be easily solved by conventional methods, but also finally solve the problems concluding topography model and lateral heterogeneity. We will try to find a way to fully implement self-gravitation in spectral element method in future, and do our best to continue researching the Earth’s free oscillations using the numerical simulations to see how the Earth’ lateral heterogeneous will affect the Earth’s free oscillations. These will make it possible to bring modal spectral data increasingly to bear on furthering our understanding of the Earth’s three-dimensional structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two problems are studied in this thesis, the relationship of the magneto-spheric - ionospheric current systems during storms, and the effects of the main field to the space environment. The thesis includes three parts. 1. Magnetic disturbances caused by magnetospheric - ionospheric current systems Transient variations of the geomagnetic field at middle-low latitudes are mainly caused by the ionospheric dynamo current (IDC), the symmetric ring current (SRC), the partial ring current-region II field-aligned current-ionospheric current system (PRFI), and the region I field-aligned current-ionospheric current system (FACI). The storm on May 1 ~ 6, 1998 is analyzed. Firstly, the S_q-field caused by IDC current is removed by using the modified Hibberd's method in which the effect of SRC is considered. The neglect of SRC-field can give as much as 40% error in S_q-field evaluation. Secondly, the disturbance fields at the middle and low latitudes are separated according to their origins. As a result, the disturbance caused by FACI-current is an important part of the asymmetrical depression of H-component in middle and low latitudes during storms. The results show that the relative intensity of the Sq-field increases in the main phase of the storm and decreases in the recovery phase. The latitudinal gradient of the Sq-field is positive during the whole storm. The storm of May 1 ~ 6, 1998 contains two events. In the first event on May 2, the SRC-field is similar to Dst index. But in the second event on May 4 ~ 5, the SRC-field delays to Dst index, and the SRC-field depresses while the PRFI- and FACI-fields recovery. 2. Analysis of S_q~p variation in CGM coordinates In order to study the conjugation of geomagnetic variations between northern and southern hemispheres, we use the corrected geomagnetic coordinates (CGM) instead of the geomagnetic coordinates (GM) to analyze the S_q~P equivalent current system. The CGM coordinates are built up by International Geomagnetic Reference Field (IGRF) model. The S_q~p variations and equivalent current systems in the northern and southern polar regions are more symmetrical in CGM coordinates than in GM co-ordinates. This fact implies that the current distributions in polar regions are governed by the configuration of the geomagnetic field lines. As the elaborate structure of S_q~p current system in quiet time is obtained, we summarize the seasonal variation of the electrojet in quiet time. 3. The magnetospheric configuration of non-parallel-dipole model The magnetospheric configurations are calculated for two possible geomag-netic field models during the geomagnetic field reversals. These models are the dipole field with the axis to the sun and the quadrupole field model. We use the finite element method to solve the magnetic equation, and use the surface evolution method to solve the equilibrium equation. The results show that the main field greatly affects the space environment.