221 resultados para Situ XANES
Resumo:
Function of chloride and effect of various alkylaluminiums, C1/A1 molar ratio, solvents on cyclization in situ of isoprene polymerization catalyzed by Nd-Al bimetallic complex were studied. The structure of cyclized products was characterized by means of IR and H-1 NMR, The results indicated that in the course of isoprene polymerization with rare earth catalytic system, the function of alkylchloride introduced is terminating cis-polymerization and generating cationic species with alkyl-aluminums to initiate cyclization in situ. Soluble cyclized polyisoprene was obtained with fragments of cyclopolyisoprene.
Resumo:
The electrooxidation of vitamin D-2 (VD2) was studied by cyclic voltammetry and in situ circular dichroic (CD) spectroelectrochemistry for the first time, The mechanism of electrooxidation and some useful kinetic and adsorption parameters were obtained. The results showed that the oxidation of VD2 in ethanol solution is an irreversible diffusion controlled process following a weak adsorption of the electroinactive product at a glassy carbon electrode, which blocks the electrochemical reaction. The electrooxidation occurs mainly at the triene moieties of the VD2 molecule. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential E-0 = 1.08 V, alphan = 0.245, the standard electrochemical rate constant k(0) = 4.30( +/- 0.58) x 10(-4) cm s(-1) and the adsorption constant beta = 1.77(+/- 0.25) were obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The characterization of free base porphyrin 2,3,7,8,12,13,17,18-octakis(hexyl-thio) tetraazaporphyrin (H(2)OHTTAP) and its zinc(II) complexes [Zn(II)OHTTAP] containing eight thioether groups at the beta -pyrrole positions of the macrocycle was reported. Results obtained by cyclic voltammetry and differential pulse voltammetry indicated a five-electron reduction in five steps for each complex. They were oxidized in two single-electron-transfer steps to yield pi -cation radicals and dications and reduced in three single-electron-transfer steps to yield pi -anion radicals, dianions and trianions, respectively. The redox property of H(2)OHTTAP was unusual as compared to porphyrins (PPs) and phthalocyanines (Pcs). Each process was monitored by in situ thin-layer spectroelectrochemistry, which indicated that only the Ligand was electroactive. The existence of the eight hexylthio groups was responsible for the intrastack interactions and enhanced intracolumnar and intercolumnar electron motions, resulting in improved conductivity. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
A polythiophene film was electrochemically deposited on a Pt micro-plate electrode and investigated by cyclic voltammetry and in-situ reflection microscopic FTIR spectroscopy. The FTIR analysis showed that the electropolymerization of thiophene on the Pt surface was affected Lv the surface adsorption processes of thiophene molecules. Two adsorption modes were identified. Two structure models of the polythiophene chain were observed simultaneously. It was proposed that the good conductibility of the polythiophene film was originated from a co-vibratory equilibrium of the link part of model I and model II.
Resumo:
The adsorption and oxidation of yeast RNA and herring sperm DNA (HS DNA) at glass carbon (GC) electrode are studied by differential pulse voltammetry (DPV) and in situ FTIR spectroelectrochemistry. Two oxidation peaks of yeast RNA are obtained by DPV, whose peak potentials shift negatively with increasing pH. The peak currents decrease gradually in successive scans and no corresponding reduction peaks occur, thus indicating that the oxidation process of yeast RNA is completely irreversible. The IR bands in the 1200-1800 cm-l range, attributed to the stretching and ring vibrations of nucleic acid bases, show the main spectral changes when the potential is shifted positively, which gives evidence that the oxidation process takes place in the base residues. The oxidation process of HS DNA is similar to that of yeast RNA. The results both from DPV and in situ FTIR spectroelectrochemistry confirm that the guanine and adenine residues can be oxidized at the electrode surface, which is consistent with the oxidation mechanism of nucleic acids proposed previously. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In-situ Fourier transform infra-red (FTIR) spectra of native and thermally denatured calf thymus DNA (CT DNA) adsorbed and/or oxidized at a glassy carbon (GC) electrode surface are reported. The adsorption of native DNA occurs throughout the potential range (-0.2 similar to 1.3 V) studied, and the adsorbing state of DNA at electrode surface is changed from through the C=O band of bases and pyrimidine rings to through the C=O of cytosine and imidazole rings while the potential shifts negatively from 1.3 V to -0.2 V. An in-situ FTIR spectrum of native CT DNA adsorbed at GC electrode surface is similar to that of the dissolved DNA, indicating that the structure of CT DNA is not distorted while it is adsorbed at the GC electrode surface. In the potential range of -0.2 similar to 1.30 V, the temperature-denatured CT DNA is adsorbed at the electrode surface first, then undergoes electrochemical oxidation reaction and following that, diffuses away from the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The redox process of norepinephrine in pH = 7.0 phosphate buffer solution at glassy carbon electrode was studied by circular dichroism spectroelectrochemistry with a long optical path thin layer cell. The spectroelectrochemical data were analyzed with the double logarithm method. According to the double logarithsmic plot results, the mechanism of electrochemical oxidation of norepinephrine is an irreversible process with a subsequent chemical reaction (EC) to form a norepinephrinechrome. Both of norepinephrinequinone and norepinephrinechrome are followed E mechanisms. Some kinetic parameters about the electrochemical process, i.e. the electron transfer coefficient and number of electron transfered, alpha n = 0.38, the formal potential, E-1(0)' = 0.20 V, the standard heterogenous electron transfer rate constant, k(1)(0) = 1.2 x 10(-4) cm s(-1) for the oxidation of norepinephrine, alpha n = 0.37, E-2(0)' = 0.25 V and k(2)(0) = 4.4 x 10(-5) cm . s(-1) for the reduction of norepinephrinequnone and alpha n = 0.33, E-3(0)' = -0.25V and k(3)(0) = 1.1 x 10(-4) cm . s(-1) for the reduction of norpinephrinechrome, were also estimated.
Resumo:
The electroxidation of ergosterol was studied by in situ circular dichroic (CD) spectroelectrochemistry with a long optical path length thin layer cell. It was confirmed that the oxidation of ergosterol in ethanol solution is a two-electron irreversible electrochemical process with strong adsorption of an electroinactive product at the glassy carbon electrode, which blocks the electrochemical reaction. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential, E-0 = 1.00 V, alpha n(alpha) = 0.302, the standard electrochemical rate constant, k(0) = 6.1(+/-0.4) x 10(-4) cm s(-1) and the adsorption constant, beta = 19 +/- 1, were obtained. The number of electrons transferred (n = 1.86) was estimated by cyclic voltammetry.
Resumo:
In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 mu m diameter Pt disk electrode. Using this technique, the catalytic ability of cobalt hexacyanoferrate(CoHCF) microcrystalline toward AA oxidation was also studied, it was found that the dispersed CoHCF powder in the PEG paste can generate well-shaped thin-layer cyclic voltammetric waves with the peak height proportional to the scan rate, corresponding to the Fe centered redox reactions. This oxidation step catalyzed the AA oxidation. Also, this pasted CoHCF powder generated well-resolved in-situ MFTIRs spectra, by which a chemical interaction between C = C bond of AA ring and CoHCF lattice was revealed. A corresponding surface docking mechanism for the catalytic reaction has been proposed.
Resumo:
Studies for the development of the in-situ microscopic FTIR spectroelectrochemistry (MFTIRS) have been carried out in polyethylene glycol(PEG) polyelectrolyte, Redox reaction mechanisms of various electroactive substances involving inorganic salt, organic compound and inorganic polymeric particles have been studied.
Resumo:
The electrode reaction process of ascorbic (Vc) was studied by in-situ circular dichroic(CD) spectroelectrochemistry with a long optical path thin layer cell on glassy carbon(GC) electrode. The spectroelectrochemical data were analyzed by the double logarithmic method together with nonlinear regression. The results suggested that the mechanism of Ve in pH 7.0 phosphate buffer solution at GC electrode was a two-electron irreversible electrooxidation followed by adsorption of the oxidation product. That is a self-accelerated process. Some kinetic parameters at free and at adsorbed electrode surface, i.e, the formal potentials, E-0' = 0.09 V, E-a(0') = 0.26 +/- 0.02 V; the electron transfer coefficient and number of transfered electron, alpha n = 0.41, alpha(a)n = 0.07;the standard heterogeneous electron transfer rate constant, k(0) = 8.0 x 10(-5) cm.s(-1), k(a)(0) = 1.9 x 10(-4) cm.s(-1) and adsorption constant, beta = 102.6 were also estimated.
Resumo:
A new nickel (II)-cyanometallates modified on glassy carbon electrode was prepared by a new method and studied by cyclic voltammetry and in situ Fourier transform infrared (FTIR) spectroelectrochemistry. It was found that the NiHCF film existed in two forms: Ni2Fe(II)-(CN)(6) and M2NiFe(II)(CN)(6), Fe(CN)(3)(6-) codeposited in the NiHCF film existing in free cation or bridged-bond state depended on the property of the cations in electrolyte: in NaCl and LiCl solution, it is in bridges-bonded, but in HCl and KCl, it is free.
Resumo:
The ion pair between the dianion of 7,7,8, 8-tetracyanoquinodimethane(TCNQ) and Li+ were investigated by in - situ microscopic Fourier transform infrared( FTIR) spectroelectrochemical technique. The effect of ion pair increases with increasing the concentration of cation. We observed a new band at 2130 cm(-1).
Resumo:
Plussian blue(PB)/Pt modified electrode Tvas studied in the CdCl2 electrolyte solution by cyclic voltammetry and in situ FTIR spectroelectrochemistry. It was found that Cadmium ion was capable of substituting the high-spin iron of PB in an electrochemically induced substitution reaction and hexacyanoferrate cadmium (CdHCF) can be formed in the PB film. But PB and CdHCF in mixture film showed their own electrochemistry properties without serious effect on each other. The mechanism of substitution reaction has been given in detail.
Resumo:
In-situ synthesis of terbium complex with salicylic acid (Sal) in silica matrix was made by a two-step sol-gel process. The terbium complex with salicylic acid was formed in sol-gel derived silica gel, and confirmed by the luminescence excitation spectra and infrared(IR) spectra. As compared to the pure terbium complex powder, the silica gel containing terbium complex exhibits its characteristic emission and presents a longer fluorescence lifetime than that for the pure complex. The luminescence properties of the complex containing;silica gel were investigated and compared with that of both terbium doped the silica gel and thp pure complex powder. The reasons leading to the above results were also discussed.