156 resultados para Silver sulfadiazine
Resumo:
It was found that microperoxidase-ll (MP-II) can undergo photoreduction at the bale roughened silver electrode. No photoreduction happens at the roughened silver electrode modified with mercaptoundecanoic carboxylic acid/poly-lysine. The photoreduction mechanism is discussed.
Resumo:
Photoelectrochemical reduction of nitrite and nitrate was studied on the surface of an electrochemically roughened silver electrode. The dependence of the photocurrent on photon energy, applied potential, and concentration of nitrite was determined. It was concluded that the photoelectrochemical reduction proceeds via a photoemission process followed by the capture of hydrated electrons by electron accepters. The excitation of plasmon resonances in nanosize metal structures produced during the roughening procedure resulted in the enhancement of the photoemission process. Ammonia was detected as one of the final products in this reaction. Mechanisms for the photoelectrochemical reduction of nitrite and nitrate are proposed.
Resumo:
Capillary electrophoresis (CE) with end-column electrochemical detection (EC) of sulfadiazine (SDZ) and sulfamethoxazole (SMZ) is described. Under the optimum conditions, SDZ and SMZ were separated satisfactorily, and a highly sensitive and stable response was obtained at a potential of 1.1 V versus Ag/AgCl. Optimized end-column detection provides detection limits as low as 0.1 mu M for both compounds, which corresponds to 0.024 and 0.021 fmol with peak efficiencies of 394000 and 335000 theoretical plates for SDZ arid SMZ, respectively. The calibration graph was linear over three orders of magnitude. The relative standard deviations (n = 12) of peak currents and migration times were 2.3 and 2.7%, and 0.8 and 1.3%, respectively, for the two compounds. The proposed method was applied to the analysis of tablets and human urine samples with satisfactory results.
Resumo:
Multilayer assemblies of silver doped ZnS colloid and polycation were fabricated by a self-assembly technique exploiting electrostatic interaction. UV/Vis spectra showed the uniform deposition process and X-ray photoemission spectroscopy (XPS) confirmed the coexistence of silver. It was found that the emission spectra of the silver doped ZnS colloid red-shifted to 528 nm comparing with undoped ZnS colloid. However, the most important finding was that the luminescence intensity of doped ZnS assembled in films was much stronger than that of undoped ZnS in films and that of doped ZnS in the spin-casting film. The mechanism of the enhancement luminescence was discussed. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
A successful analysis of silver was reported utilizing laser desorption/ionization time-of-flight mass spectrometry (LDI/TOF-MS) in this paper, The silver cluster ions Ag-n(+) and AgnO+ (n=2 similar to 5) were formed during laser desorption/ionization. In the presence of I-, K+ and Na+, the peaks corresponding, to the cluster ions [AgnIn-1](+) (n=2 similar to 6) and the adduct ions [AgI](+), [AgI]Na+ and [AgI]K+ were observed in the positive ion spectrum; the peaks corresponding to [AgnIn+1](-) (n=1 similar to 3) were found in the negative ion spectrum, all of which accompanied by sliver isotope distribution, The formation of silver cluster ions was accomplished through two-stage reaction: the first step was the generation of clusters, which was followed by the processes of photoionization and ion/molecule reaction.
Resumo:
Three new compounds AgLnMo(2)O(8) (Ln = Eu, Gd, Tb) crystallize with a tetragonal scheelite-type structure characterized by MoO4 tetrahedra. The IR spectra show three absorption bands, which correspond respectively to the nu(1), nu(2), and nu(3) modes of the tetrahedral-MoO42- groups. The emission of AgGdMo2O8 shows the band of the MoO42- groups around 600 nm wavelength with very weak intensity. Both AgEuMo2O8 and AgTbMo2O8 emit intensely, and the concentration quenchings of both Eu3+ and Tb3+ luminescences are very weak. For all compounds, Ag+ luminescence is not observed. (C) 1996 Academic Press, Inc.
Resumo:
We present the synthesis of AgLnMo(2)O(8) compounds with Ln = La-Nd and Sm. These compounds represent a scheelite-type structure characterized by MoO4- tetrahedrons. IR spectra show five absorption peaks in the region of 1000-400cm(-1), around 800cm(-1) and 400cm(-1), which correspond to the modes of the tetrahedral MoO42- groups. All of AgLnMo(2)O(8) (Ln = La-Nd and Sm) oxides are dielectric materials at room temperature. The temperature dependence of the magnetic susceptibility ofAgLnMo(2)O(8) (Ln = Ce-Nd and Sm) shows Curie-Weiss law behavior from 100K to 300K. This indicates that both Ce and Pr exist in +3 oxidation state in AgLnMo(2)O(8). For AgLaMo2O8, diamagnetic properties are found as expected.
Resumo:
N-Methyl-N'-hexadecylviologen (C16MV) has been the subject of several electrochemical and spectroelectrochemical studies which characterized the species present in various redox states for C16MV monolayers on silver electrode surfaces. Both self-assembled monolayers (SA) and Langmuir-Blodgett (LB) transferred systems have been studied. These indicated inconsistencies regarding the presence or absence of splitting of the first reduction peak in its cyclic voltammogram (CV). The present study demonstrates the important influence of the specific anionic species present in the supporting electrolyte. Splitting may or may not take place, depending on the size and relative strength of the adsorption of specific anions contributed by the supporting electrolyte. Small, strongly adsorbing anions such as iodide produced peak splitting in the CV of C16MV monolayers; bulky but weakly adsorbing anions such as perchlorate may disrupt the ordered structure of monolayers but produce no splitting. Ancillary data provided by surface enhanced Raman spectroscopy (SERS) was consistent with the electrochemical measurements.
Resumo:
This work describes the preparation of a chelating resin from chemically modified chitosan. The resin was synthesized by using O-carboxymethylated chitosan to cross-link a polymeric Schiffs base of thiourea/glutaraldehyde and characterized by IR. Batch method was applied for testing the resin's adsorption behavior. Adsorption experiments showed the resin had good adsorption capacity and high selectivity for Ag(I) in aqueous solution. The maximum uptake of Ag(I) exhibited was 3.77 mmol/g, at pH 4.0. The results also indicated that the adsorption process was exothermic and fit well with the pseudosecond-order kinetic model. Ag(I) desorption could reach 99.23% using 0.5 M thiourea-2.0 M HCl solution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Propylene epoxidation by air was carried out on NaCl-modified silver (NaCl/Ag) catalysts, and the catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effects of NaCl loadings, propylene to oxygen ratio, and the reaction time on the catalytic performance were investigated. It was found that the addition of NaCl to silver significantly increases the propylene oxide (PO) selectivity. The PO yield has a maximum when the NaCl loading is about 10 wt.%. Also 12.4% conversion of propylene and 31.6% selectivity to PO are obtained on the NaCl/Ag (10 wt.%) catalyst at 350 degreesC, space velocity 1.8 x 10(4) h(-1) and C3H6:O-2 = 1:2. XPS and XRD characterizations show that AgCl formed on the silver catalyst was favorable to propylene epoxidation. A compound with highly oxidized Ag ion was also found, which may be effective for the reaction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Surface-enhanced Raman scattering (SERS) of xanthopterin adsorbed on colloidal silver was measured and the Raman spectrum calculated by the density functional theory method was also obtained. Xanthopterin can be detected down to 5 X 10(-9) m and the enhancement of the scattering intensity is at least 10(5)-fold. Xanthopterin molecules are adsorbed flatly on the surface of the Ag particles. This study shows that SERS could be another prospective method for the detection of pterines. Copyright (C) 2001 John Wiley Sons, Ltd.