160 resultados para Shear bands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-spin states in nucleus Pm-139 have been studied using the reaction Cd-116(Al-27, 4n)Pm-139. Two dipole cascades have been found. Spin and parity assignments were based on the Directional Correlation of Oriented Nuclei (DCO) ratios and systematic behavior in neighboring odd-proton nuclei. The level structures of Pm-139 are compared with those of the N = 78 isotone Eu-141 in which two dipole bands have been confirmed as magnetic rotational bands. The close similarity between them suggests that the dipole bands in Pm-139 may be magnetic rotational bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of the generalized liquid drop model (GLDM) and improved Royer's formula, we investigate the branching ratios and half-lives of alpha-decay to the members of the ground-state rotational bands of heavy even-even Fm and No isotopes. The calculated results are in good agreement with the available experimental data and some useful predictions are provided for future experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental data are presented to show the influence of alkyl metal phosphates, Shengli resin fraction, and NaCl, on the shear viscosity of interfacial films and the stability of emulsions. It was found that the alkyl metal phosphates and the Shengli resin fraction could enhance the shear viscosity of interfacial films and the stability of emulsions. NaCl (0.01-0.03 mol L-1) could change the shear viscosity of interfacial films containing alkyl metal phosphates and the Shengli resin fraction. The shear viscosity of interfacial films containing ethyl iron phosphate and the Shengli resin fraction decreased with the increase of the concentration of NaCl. On the other hand, NaCl could decrease the stability of the emulsions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study relates tidal channel cross-sectional area (A) to peak spring discharge (Q) via a physical mechanism, namely the stability shear stress ( tau sub(S)) just necessary to maintain a zero gradient in net along-channel sediment transport. It is assumed that if bed shear stress ( tau ) is greater than tau sub(S), net erosion will occur, increasing A, and reducing tau similar to (Q/A) super(2) back toward tau sub(S). If tau < tau sub(S) there will be net deposition, reducing A and increasing tau toward tau sub(S). A survey of the literature allows estimates of Q and A at 242 sections in 26 separate sheltered tidal systems. Assuming a single value of tau sub(S) characterizes the entire length of a given tidal channel, it is predicted that along-channel geometry will follow the relation Ah sub(R) super(1) super(/) super(6) similar to Q. Along-channel regressions of the form Ah sub(R) super(1) super(/) super(6) similar to Q super( beta ) give a mean observed value for beta of 1.00 plus or minus 0.06, which is consistent with this concept. Results indicate that a lower bound on tau sub(S) (and an upper bound on A) for stable channels is provided by the critical shear stress ( tau sub(C)) just capable of initiating sediment motion. Observed tau sub(S) is found to vary among all systems as a function of spring tidal range (R sub(sp)) according to the relation tau sub(S) approximately 2.3 R sub(sp) super(0.79) tau sub(C). Observed deviations from uniform tau sub(S) along individual channels are associated with along-channel variation in the direction of maximum discharge (i.e., flood-versus ebb-dominance).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk and nano-materials Sr2CeO4 were prepared by solid-state reaction and sol-gel technique, respectively. Photoluminescence shows that luminescence has the characteristic of a ligand-to-metal charge transfer (CT) emission. Compared with bulk Sr2CeO4, the nano-material exhibits stronger emission intensity, longer decay time, and higher CT excitation energy. Three CT excitation peaks were observed in both bulk and nano samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linkam CSS450 optical shearing stage, wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering(SAXS) were used to investigate the effect of shear on crystal structure and crystallization morphology of the glass bead filled polypropylene( PP). The results indicate that the glass bead worked as nucleating agent for the glass bead filled PP, compared with pure PP it restrained the formation of beta-crystal after shear treatment. When the mean size of glass bead is smaller(4 mu m) shear rate had less effect on the formation of beta-crystal of PP obviously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of Shear flow on the formation of rill.-shaped ABA triblock copolymer (P4VP(43)-b-PS260-b-P4VP(43)) micelles. The results reveal that Shear flow Plays an important role in the formation of the rings Both ring size and its, distribution are found to be dependent sensitively on the stirring rate. Sizable rings are more likely to be formed at moderate stirring rate, Interestingly, the ring formation mechanism is also dependent oil the Shear flow. Copolymers are likely to form rings via end-to-end cylinder connection at low stirring rates, whereas they tend to form rings via the pathway of the rod-sphere-vesicle-ring it high stirring rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to investigate the effect of consecutive shear on the crystallization of an amorphous aromatic polyimide (PI) derived from 3,3',4,4'oxydiphthalic dianhydride (3,3',4,4'-ODPA) and 4,4-oxydianiline (ODA). At 260 degrees C, the increase of shear rate or shear time leads to the increase of crystallinity. Indeed, increasing shear rate can also accelerate the crystallization behavior. Moreover, it was found that a new melting peak appeared at higher temperature for long time or high rate sheared sample. The enhancement of crystallization behavior appears directly linked to the increase of crystal thickness. Particularly, the effect of shear temperature was investigated, and the results revealed that the crystallization of the PI was more sensitive to shear at 260 degrees C, which was 10 degrees above the glass transition temperature (250 degrees C) of the PI. Possible mechanism was proposed to illustrate the effect of consecutive shear on the crystallization of the PI polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breakup process of polyamide 6 (PA6) in polypropylene (PP) matrix under shear flow was online studied by using a Linkam CSS 450 stage equipped with optical microscopy. Both tip streaming and fracture breakup modes of PA6 droplets were observed in this study. It was reported that the droplet would break up by tip streaming model when the radio of the droplet phase viscosity to the matrix phase viscosity (n(r) = n(d)/n(m)) is smaller than 0.1 (Taylor, Proc R Soc London A 1934, 146, 501; Grace, Chem Eng Commun 1982, 14, 225; Bartok and Mason, J Colloid Sci 1959, 14, 13; Rumscheidt and Mason, J Colloid Sci 1961, 16, 238; de Bruijn, Chem Eng Sci 1993, 48, 277). However, the tip streaming model was observed even when the viscosity ratio was much greater than 0.1 (n(r) = 1.9). In this study for the tip streaming mode, small droplets were ruptured from the tip of the mother droplet. On the other hand, the mother droplet was broken into two or more daughter droplets with one or several satellite droplets between them for the fracture mode. It was found that PA6 droplet was much elongated at first, and then broke up via tip streaming or fracture to form daughter droplets or small satellite droplets with the shape of fiber or ellipse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-banded textures developed from thin films of a main-chain thermotropic liquid crystalline chloro-poly(aryl ether ketone) in the melt were investigated using transmission electron microscopy (TEM). selective area electron diffraction, and atomic force microscopy techniques. The micro-banded textures were formed in the copolymer thin films after annealing at temperatures between 320 and 330degreesC, where a highly ordered smectic crystalline phase is formed without mechanical shearing. The micro-banded textures displayed a sinusoidal-like periodicity with a spacing of 150 nm and an amplitude of 2 rim. The long axis of the banded texture was parallel to the b-axis of an orthorhombic unit cell. In the convex regions, the molecular chains exhibited a homeotropic alignment, i.e. the chain direction was parallel to the film normal. In the concave re-ions, the molecular chains possessed a tilted alignment. In addition to the effects of annealing temperatures and times, the thickness of the film played a vital role in the formation of the banded texture. A possible formation mechanism of this banded texture vas also suggested and discussed. It was suggested that the micro-bands were formed during cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal crystallization kinetics under shear in the melt of iPP was investigated by optical microscopy. It appears that shearing from 200 to the crystallization temperatures enhanced the kinetics, but the shear effect was not obvious if the melt of iPP was sheared only at 200. The experiment results show that relaxation plays an important role during crystallization, and that spherulite growth rates increased with shear rates and were governed by relaxation. The effect of flow on the crystallization kinetics can be understood by considering that the increase of the degree of order due to flow results is an effective change of the melt free energy. The Laurizen-Hoffman theory and the DE-IAA model were used to describe the shear-induced crystallization kinetics of iPP excellently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wide-angle X-ray diffraction (WAXD) was used to investigate the effects of shear on the crystallization behavior of polypropylene (PP) with beta-nucleating agent. The melt was subjected to shear at the shear rate from 0.5 to 60 s(-1) for 5 s with a CSS450 shear stage. For the PP with low content of the additive, the formation mechanism of the beta crystals is almost the same as that of pure isotactic polypropylene (iPP), viz., shear induces. Otherwise, for the samples with high content of the additive, the formation mechanism of the beta form are nucleating agent induces. The results clearly show that shear restrains the formation of high beta phase for the melt with additive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABS/PVC blends were prepared over a range of compositions by mixing PVC, SAN, and PB-g-SAN. All samples were designed to have a constant rubber level of 12 wt % and the ratio of total-SAN to PVC in the matrix of the blends varied from 70.5/17.5 to 18/80. Transmission electron microscope and scanning electron microscope have been used to study deformation mechanisms in the ABS/PVC blends. Several different types of microscopic deformation mechanisms, depending on the composition of blends, were observed for the ABS/PVC blends. When the blend is a SAN-rich system, the main deformation mechanisms were crazing of the matrix. When the blend is a PVC-rich system, crazing could no longer be detected, while shear yielding of the matrix and cavitation of the rubber particles were the main mechanisms of deformation. When the composition of blend is in the intermediate state, both crazing and shear yielding of matrix were observed. This suggests that there is a transition of deformation mechanism in ABS/PVC blends with the change in composition, which is from crazing to shear deformation.