165 resultados para Sargassum sp.
Resumo:
Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.
Resumo:
Marine bacterium Vibrio sp. F-6, utilizing agarose as a carbon source to produce agarases, was isolated from seawater samples taken from Qingdao, China. Two agarases (AG-a and AG-b) were purified to a homogeneity from the cultural supernatant of Vibrio sp. F-6 through ammonium sulfate precipitation, Q-Sepharose FF chromatography, and Sephacryl S-100 gel filtration. Molecular weights of agarases were estimated to be 54.0 kDa (AG-a) and 34.5 kDa (AG-b) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH values for AG-a and AG-b were about 7.0 and 9.0, respectively. AG-a was stable in the pH range of 4.0-9.0 and AG-b was stable in the pH range of 4.0-10.0. The optimum temperatures of AG-a and AG-b were 40 and 55 degrees C, respectively. AG-a was stable at temperature below 50 degrees C. AG-b was stable at temperature below 60 degrees C. Zn2+, Mg2+ or Ca2+ increased AG-a activity, while Mn2+, Cu2+ or Ca2+ increased AG-b activity. However, Ag+, Hg2+, Fe3+, EDTA and SDS inhibited AG-a and AG-b activities. The main hydrolysates of agarose by AG-a were neoagarotetraose and neoagarohexaose. The main hydrolysates of agarose by AG-b were neoagarooctaose and neoagarohexaose. When the mixture of AG-a and AG-b were used, agarose was mainly degraded into neoagarobiose.
Resumo:
Marine Streptomyces are potential candidates for novel natural products and industrial catalysts. In order to set up biosynthesis approach for a holomycin-producing strain M095 isotated from Jiaozhou Bay, China, a genetic transformation system was established using intergeneric conjugation. The plasmid pIJ8600 consists of an origin of replication for Escherichia coli, a phage integrase directing efficient site-specific integration in bacterial chromosome, thiostrepton-induced promoter and an attP sequence. Using E. coli ET12567 (pUZ8002) carrying pIJ8600 as a conjugal donor, while it was mated with strain M095, pIJ8600 was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. The frequency of exconjugants was 1.9 +/- 0.13 x 10(-4) per recipient cell. Analysis of eight exconjugants showed pIJ8600 was stable integrated at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of growth and antimicrobial activity analysis indicated that the integration of pIJ8600 did not seem to affect the biosynthesis of antibiotics or other essential amino acids. To demonstrate the feasibility of above gene transfer system, the allophycocyanin gene (apc) from cyanobacterium Anacystis nidulans UTEX625 was expressed in strain M095, and the results indicated heterologous allophycocyanin could be expressed and folded effectively. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Synchocystis sp. PCC 6803 lacks a gene for the any known types of lycopene cyclase. Recently, we reported that sll0659 (unknown for its function) from Synechocystis sp. PCC6803 shows similarity in sequence to a lycopene cyclase gene-CruA from Chlorobium tepidum. To test, whether Sll0659 encoded protein serves as lycopene cyclase, in this study, we investigated the carotenoids of the wild types ans mutants, In the sll0659 deleted mutant, there is no blockage at the lycopene cyclization step. Our results demonstrate that sll0659 does not affect lycopene cyclization. However, the ultrastructure of mutants suggests the involvement or necessity of sll0659 in the cell division.
Resumo:
The chitosanase production was markedly enhanced by substrate induction, statistical optimization of medium composition and culture conditions by Microbacteritan sp. OU01 in shake-flask. A significant influence of (NH4)(2)SO4, MgSO4 center dot 7H(2)O and initial pH on chitosanase production was noted with Plackett-Burman design. It was then revealed with the method of steepest ascent and response surface methodology (RSM) that 19.0 g/L (NH4)(2)SO4, 1.3 g/L MgSO4 and an initial pH of 2.0 were optimum for the production of chitosanase; colloidal chitosan appeared to be the best inducer for chitosanase production by Microbacterium sp. OU01. This optimization strategy led to the enhancement of chitosanase from 3.6 U/mL to 118 U/mL. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A gene encoding a chitosanase (mschito) was cloned from Microbacterium, sp. OU01. The ORF consists of 801 bp which encoded a polypeptide of 266 amino acid residues. The deduced amino acid sequence shows 98% identity to that of the chitosanase reported in Pseudomonas sp. A-01. In addition, the fusion protein containing MSCHITO was expressed in E. coli and purified using Ni-NTA affinity chromatography. The purified rMSCHITO protein degraded the chitosan (the degree of deacetylation of 99%) and produced a mixture of chitooligosaccharides. The MSCHITO is thus an endo-chitosanase.
Resumo:
Morphology and culture studies on germlings of Sargassum thunbergii (Mertens et Roth) Kuntze were carried out under controlled laboratory conditions. Growth characteristics of these germlings grown under different temperatures (from 10 to 25A degrees C), irradiances (from 9 to 88 mu mol photons m(-2) s(-1)), and under blue and white light conditions are described. The development of embryonic germlings follows the classic "8 nuclei 1 egg" type described for Sargassaceae. Fertilized eggs spent 5-6 h developing into multicellular germlings with abundant rhizoids after fertilization. Under conditions of 20A degrees C, 44 mu mol photons m(-2) s(-1) and photoperiod of 12 h, young germlings with one or two leaflets reached 2-3 mm in length after 8 weeks. Temperature variations (10, 15, 20, 25A degrees C) under 88 mu mol photons m(-2) s(-1) significantly influenced the growth rate within the first week, although this effect became less obvious after 8 weeks, especially at 15 and 20A degrees C. Variation in germling growth was highly significant under different irradiances (9, 18, 44, 88 mu mol photons m(-2) s(-1)) at 25A degrees C. Low temperature (10A degrees C) reduced germling growth. Growth of germlings cultured under blue light was lower than in white light. Optimal growth of these germlings occurred at 25A degrees C and 44 mu mol photons m(-2) s(-1).
Resumo:
Sargassum muticum is important in maintaining the structure and function of littoral ecosystems, and is used in aquaculture and alginate production, however, little is known about its population genetic attributes. In this study, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure of four populations of S. muticum and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China. The selected 24 RAPD primers and 19 ISSR primers amplified 164 loci and 122 loci, respectively. Estimates of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate level of genetic variations within each S. muticum population, and a high level of genetic differentiations were determined with pairwise unbiased genetic distance (D) and fixation index (F-ST ) among the populations. The Mantel test showed that two types of matrices of D and F-ST were highly correlated whether from RAPD (r = 0.9706, P = 0.009) or ISSR data (r = 0.9161, P = 0.009). Analysis of molecular variance (AMOVA) was conducted to apportion the variations among and within the S. muticum populations. It indicated that variations among populations were higher than those within populations, being 55.82% verse 44.18% by RAPD and 55.21% verse 44.79% by ISSR, respectively. Furthermore, the Mantel test suggested that genetic differentiations among populations were related to the geographical distances (r > 0.6), namely, conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. On the whole, the high genetic structuring among the four S. muticum populations along the distant locations was clearly indicated in RAPD and ISSR analyses (r > 0.9, P < 0.05) in our study.
Resumo:
Genetic variation of four populations of Sargassum thunbergii (Mert.) O. Kuntze and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China was studied with random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. A total of 28 RAPD primers and 19 ISSR primers were amplified, showing 174 loci and 125 loci, respectively. Calculation of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate levels of genetic variations within each S. thunbergii population. High genetic differentiations were determined with pairwise Nei's unbiased genetic distance (D) and fixation index (F-ST) between the populations. The Mantel test showed that two types of matrices of D and FST were highly correlated, whether from RAPD or ISSR data, r=0.9310 (P = 0.008) and 0.9313 (P=0.009) respectively. Analysis of molecular variance (AMOVA) was used to apportion the variations between and within the S. thunbergii populations. It indicated that the variations among populations were higher than those within populations, being 57.57% versus 42.43% by RAPD and 59.52% versus 40.08% by ISSR, respectively. Furthermore, the Mantel test suggested that the genetic differentiations between the four populations were related to the geographical distances (r > 0.5), i.e., they conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. As a whole, the high genetic structuring between the four S. thunbergii populations along distant locations was clearly indicated in the RAPD and ISSR analyses (r > 0.8) in our study.
Resumo:
In the course of a screening program, we have isolated the new natural product, 5,7-dihydroxy-5,6,7,8-tetrahydroazocin-2(IH)-one (1), from the staurosporine producing marine-derived Streptomyces sp. strain QD518. Here we report the isolation and structure elucidation of 1 and the artifacts 3 and 4 resulting from I by acid catalyzed intra- and inter-molecular reactions.
Resumo:
Allophycocyanin is one of the most important marine active peptides. Previous studies suggested that recombinant allophycocyanin (rAPC) could remarkably inhibit the S-180 carcinoma in mice, indicating its potential pharmaceutical uses. Based on intergeneric conjugal transfer, heterologous expression of rAPC was first achieved in marine Streptomyces sp. isolate M097 through inserting the apc gene into the thiostrepton-induced vector pIJ8600. The transformation frequency for this system was approximately 10(-4) exconjugants/recipient. In the transformed Streptomyces sp. isolate M097, the yield of purified rAPC could amount to about 38 mg/l using a simple purification protocol, and HPLC analysis showed that the purity of the protein reached about 91.5%. In vitro activity tests also revealed that the purified rAPC had effective scavenging abilities on superoxide and hydroxyl radicals. This would widen the usefulness of the marine Streptomyces as a host to express the rAPC and to offer industrial strain for the production of rAPC.
Resumo:
Two extracellular chitosanases (ChiX and ChiN) were extracted from Microbacterium sp. OU01 with Mr values of 81 kDa (ChiX) and 30 kDa (ChiN). ChiN was optimally active at pH 6.2 and 50 degrees C and ChiX at pH 6.6 and 60 degrees C (assayed over 15 min). Both the activities increased with the degree of deacetylation (DDA) of chitosan. ChiN hydrolyzed oligomers of glucosamine (GlcN) larger than chitopentaose, and chitosan with 62-100% DDA; but ChiX acted on chitosan and released GlcN. Hydrolysis of chitosan with 99% DDA by ChiN released chitobiose, chitotriose and chitotetraose as the major products.
Resumo:
In this study, using a bioassay-guided isolation and purification procedure, we obtained 3-chloro-2,5-dihydroxybenzyl alcohol from a marine-derived Ampelomyces species that effectively inhibited larval settlement of the tubeworm Hydroides elegans and of cyprids of the barnacle Balanus amphitrite. The inhibitive effect on larval settlement was nontoxic and the EC50 of 3-chloro-2,5-dihydroxybenzyl alcohol ranged from 3.19 mu g ml(-1) to 3.81 mu g ml(-1) while the LC50 was 266.68 lambda g ml(-1) for B. amphitrite cyprids; EC50 ranged from 0.67 mu g ml(-1) to 0.78 mu g ml(-1), and LC50 was 2.64 mu g ml(-1) for competent larvae of H. elegans, indicating that inhibitive effect of this compound was nontoxic. At a concentration of 50 mu g per disc, this compound showed strong inhibitive effects on the growth of 13 out of 15 marine bacterial species tested in disc diffusion bioassay. Overall, the high inhibitory activities against bacteria and larval settlement as well as the non- or low-toxic nature of this compound to the barnacle and polychaete larvae suggest this compound could be a potent antifoulant and/or antibiotic.
Resumo:
An efficient conjugation method has been developed for the marine Actinomyces sp. isolate M048 to facilitate the genetic manipulation of the chandrananimycin biosynthesis gene cluster. A phi C31-derived integration vector pIJ8600 containing oriT and attP fragments was introduced into strain M048 by bi-parental conjugation from Escherichia coli ET12567 to strain M048. Transformation efficiency was (6.38 +/- 0.41) x 10(-5) exconjugants per recipient spore. Analysis of eight exconjugants showed that the plasmid pIJ8600 was stably integrated at a single chromosomal site (attB) of the Actinomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of antimicrobial activity analysis indicated that the insertion of plasmid pIJ8600 seemed to affect the biosynthesis of antibiotics that could strongly inhibit the growth of E. coli and Mucor miehei (Tu284). HPLC-MS analysis of the extracts indicated that disruption of the attB site resulted in the complete abolition of chandrananimycin A-C production, proving the identity of the gene cluster. Instead of chandrananimycins, two bafilomycins were produced through disruption of the attB site from the chromosomal DNA of marine Actinomyces sp. M048.
Resumo:
An orange-pigmented, Gram-negative, nonmotile, strictly aerobic and oxidase- and catalase-positive bacterium (SM-A87(T)) was isolated from the deep-sea sediment of the southern Okinawa Trough area. The main fatty acids were i15 : 0, i17 : 0 3OH, i15 : 1 G, i17 : 1 omega 9c, 15 : 0, i15 : 0 3OH and summed feature 3 (comprising i-15 : 0 2OH and/or 16 : 1 omega 7c). MK-6 was the predominant respiratory quinone. DNA G+C content was 35.8 mol%. Flexirubin-type pigments were absent. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain SM-A87(T) formed a distinct lineage within the family Flavobacteriaceae, with < 93% sequence similarity to the nearest strain of genus Salegentibacter. Moreover, strain SM-A87(T) could be distinguished from the nearest phylogenetic neighbors by a number of chemotaxonomic and phenotypic properties. On the basis of polyphasic analyses, it is proposed that strain SM-A87(T) be classified in a novel genus and a new species in the family Flavobacteriaceae, designated Wangia profunda gen. nov., sp. nov. The type strain is SM-A87(T) (CCTCC AB 206139(T)=DSM 18752).