151 resultados para SMALL-ANGLE SCATTERING
Resumo:
Excitation functions have been measured for different projectile-like fragments produced in Al-27(F-19,x)y reactions at incident energies from 110.25 to 118.75 MeV in 250 keV steps. Strong cross section fluctuations of the excitation functions are observed. The cross- correlation coefficients of the excitation functions for different atomic number Z and for different scattering angle theta(cm) have been deduced. These coefficients are much larger than the statistical theoretical calculated ones. This indicates that there are strong correlations between different exit channels in the dissipative heavy ion Collision of Al-27(F-19,x)y.
Resumo:
The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results obtained at the setup are analyzed. For 30 keV He2+ on He collision, it is found that the capture of single electron occurs dominantly into the first excited states, and the related scattering angle results show that the ground state capture occurs at large impact parameters, while the capture into excited states occurs at small impact parameters. The results manifest the collision dynamics for the sub-femto-second process can be studied through the techniques uniquely. Finally, the future possibilities of applications of the recoil ion momentum spectroscopy in other fields are outlined.
Resumo:
Charge transfer due to collisions of ground state O3+ (2s(2)2p P-2) ions with molecular hydrogen is investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method, and electronic and vibrational state-selective cross sections along with the corresponding differential cross sections are calculated for projectile energies of 100, 500, 1000 and 5000 eV/u at the orientation angles of 25 degrees,45 degrees and 89 degrees. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations were obtained with the spin-coupled valence-bond approach. The infinite order sudden approximation (IOSA) and the vibrational sudden approximation (VSA) are utilized to deal with the rotation of H-2 and the coupling between the electron and the vibration of H-2. It is found that the distribution of vibrationally resolved cross sections with the vibrational quantum number upsilon' of H-2(+) (upsilon') varies with the increment of the projectile energy; and the electronic and vibrational stateselective differential cross sections show similar behaviors: there is a highest platform within a very small scattering angle, beyond which the differential cross sections decrease as the scattering angle increases and lots of oscillating structures appear, where the scattering angle of the first structure decreases as E-P(-1/2) with the increment of the projectile energy E-P; and the structure and amplitude of the differential cross sections are sensitive to the orientation of molecule H-2, which provides a possibility to identify the orientations of molecule H-2 by the vibrational state-selective differential scattering processes.
Resumo:
The differential cross sections for elastic scattering products of F-17 on Pb-208 have been measured. The angular dispersion plots of ln(d sigma/d theta) versus theta(2) are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena.
Resumo:
We estimate the two-photon exchange corrections to both proton and neutron electromagnetic physical observables in a relativistic light cone quark model At a fixed Q(2) the corrections are found to be small in magnitudes. but strongly dependent oil scattering angle Our results are comparable to those obtained from simple hadronic model in the medium momentum transfer region (C) 2009 Elsevier B V All rights reserved
Resumo:
By using AuNP-modified homo-adenine DNA conjugate as a model system, simple colorimetric and resonance Rayleigh scattering assays have been developed for screening small molecules that trigger the formation of the non-Watson-Crick homo-adenine duplexes. The assay presented here is more simplified in format as it involves only one type of ssDNA modified Au-NP, and can be easily adapted to high-throughput screening.
Resumo:
Small molecules are difficult to detect by conventional surface plasmon resonance (SPR) spectroscopy due to the fact that the changes in the refractive index resulted from the binding process of small biomolecules are quite small. Here, we report a simple and effective method to detect small biomolecule using SPR spectroscopy and electrochemistry by catalyzed deposition of metal ions on SPR gold film. As an example, the ascorbic acid-mediated deposition of Ag on gold film was monitored by in situ SPR spectrum. The deposition of Ag atom on gold film resulted in an obvious decrease of depth in SPR angular scan curves of reflectance intensity and minimum reflectivity angle. The depth change of the SPR reflectance intensity and minimum reflectivity angle curves mainly relied on the amount of Ag atom deposited on gold film that can be controlled by the concentration of ascorbic acid. By monitoring the deposition of Ag atom on gold film, ascorbic acid was detected in the concentration range of 2 x 10(-5) M to 1 x 10(-3) M. After each of detections, the SPR sensor surface was completely regenerated by a potential step that stripped off the Ag atom. Furthermore, the regeneration process of the sensor surface provides the feasibility for detecting the concentration of ascorbic acid by electrochemical method.
Resumo:
Based on the X-ray scattering intensity theory and using the approximate expression for the atomic scattering factor, the correction factors for three crystalline peaks and an amorphous peak of Nylon 1212 were calculated and the formula of degree of crystallinity of Nylon 1212 was derived by a graphic multipeak resolution method. The degree of crystallinity calculated from the WARD method is compatible with those obtained by density and calorimetry methods.
Resumo:
Both absolute molecular weight and molecular sizes (radius of gyration and hydrodynamic radius) of a vinyl-type polynorbornene eluting from size-exclusion chromatography columns were determined by combined with a static and dynamic laser light scattering detector. The hydrodynamic radius of polymer fraction eluting from size-exclusion chromatography columns was obtained from dynamic laser light scattering measurements at only a single angle of 900 by introducing a correction factor. According to the scaling relationship between molecular sizes and molecular weight and the ratio between radius of gyration and hydrodynamic radius, the vinyl-type polynorbornene took a random coil conformation in 1,2,4-trichlorobenzene at 150 degreesC.
Resumo:
Four different sizes of citrate-protected silver nanoplates with the corresponding in-plane dipole resonance band at 530, 619, 778, and 858 nm, respectively, are synthesized for surface-enhanced Raman scattering (SERS) study. Their aggregation behaviors are monitored by use of UV-vis spectroscopy. During the aggregation process, a marked red shift of the in-plane dipole resonance of silver nanoplates is observed, whereas other resonance modes of them only have small alterations in the site or intensity. Aggregated silver nanoplates can serve as active SERS substrates with an enhancement factor of about 4.5 x 10(5) using 2-aminothiophenol as a probing molecule. The SERS performance of silver nanoplates is even superior to the commonly used Lee-Meisel silver colloid, making them very attractive for SERS applications.
Resumo:
A series of liquid crystalline copolyethers has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane and different alpha,omega-dibromoalkanes [coTPP(n/m)]. In this report, coTPPs having n = 5, 7, 9, 11 and m = 12 are studied, which represent copolyethers having both varying odd number and a fixed even number of methylene units. The compositions were fixed at an equal molar ratio (50/50). These coTPPs(nlm) show multiple phase transitions during cooling and heating in differential scanning calorimetry experiments. The undercooling dependence of these transitions is found to be small, indicating that these transitions are close to equilibrium, Although the coTPPs possess a high-temperature nematic (N) phase, the periodicity order along the chain direction is increasingly disturbed when the length of the odd-numbered methylene units decreases from n 11 to 5. in the coTPPs(5/12, 7/12, and 9/12), wide-angle X-ray diffraction experiments at different temperatures show that, shortly after the N phase formation during cooling, the lateral molecular packing improves toward a hexagonal lattice, as evidenced by a gradual narrowing of the scattering halo. This process represents the possible existence of an exotic N phase, which serves as a precursor to the columnar (Phi(H)) phase. A further decrease in temperature leads to a (PH phase having a long-range ordered, two-dimensional hexagonal lattice. In coTPP(11/12), the phase structures are categorized as highly ordered and tilted, smectic and smectic crystal phases, similar to homoTPPs, such as the smectic F (S-F) and smectic crystal G (SCG) phases. An interesting observation is found for coTPP(9/12), wherein a structural change from the high-temperature Phi(H) phase to the low-temperature S-F phase occurs. It can be proven that, upon heating, the well-defined layer structure disappears and the lateral packing remains hexagonal. The overall structural differences in this series of coTPPs between those of the columnar and highly ordered smectic phases are related to the disorders introduced into the layer structure by the dissimilarity of the methylene unit lengths in the comonomers.
Resumo:
Morphologies of solution-cast films of iPP/aPP blends have been studied by means of electron microscopy and X-ray scattering techniques. Microscopic observation showed that solution-cast film of iPP consists of two kinds of structural regions, cross-hatched and lath-liked structures. The addition of small amount of aPP (less than or equal to 30%) into iPP did not change iPP's characteristic crystallization behavior. It is noticed that when the content of aPP in its blend was over 80%, iPP formed a very loosely woven-like network composed of very long lamellae with wide-angle lamellar branchings. The X-ray data showed that aPP did not cocrystallize with iPP.
Resumo:
The solution behavior of four chitosans (91% deacetylated chitin) with different molecular weights in 0.2M CH3COOH/0.1M CH3COONa aqueous solution was investigated at 25 degrees C by dynamic laser light scattering (LLS). The Laplace inversion of the precisely measured intensity-intensity time correlation function leads us to an estimate of the line-width distribution G(Gamma), which could be further reduced to a translational diffusion coefficient distribution G(D). By using a combination of static and dynamic LLS results, i.e. Mw and G(D), we were able to establish a calibration of D = k(D)M(-alpha D) with k(D) = (3.14 +/- 0.20) X 10(-4) and alpha(D) = 0.655 +/- 0.015. By using this calibration, we successfully converted G(D) into a molecular weight distribution f(w)(M). The larger alpha(D) value confirms that the chitosan chain is slightly extended in aqueous solution even in the presence of salts. This is mainly due to its backbone and polyelectrolytes nature. As a very sensitive technique, our dynamic LLS results also revealed that even in dilute solution chitosan still forms a small amount of larger sized aggregates that have ben overlooked in previous studies. The calibration obtained in this study will provide another way to characterize the molecular weight distribution of chitosan in aqueous solution at room temperature. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The real media always attenuate and distort seismic waves as they propagate in the earth. This behavior can be modeled with a viscoelastic and anisotropic wave equation. The real media can be described as fractured media. In this thesis, we present a high-order staggered grid finite-difference scheme for 2-D viscoelastic wave propagation in a medium containing a large number of small finite length fractures. We use the effective medium approach to compute the anisotropic parameters in each grid cell. By comparing our synthetic seismogram by staggered-grid finite-difference with that by complex-ray parameter ray tracing method, we conclude that the high-order staggered-grid finite-difference technique can effectively used to simulate seismic propagation in viscoelastic-anisotropic media. Synthetic seismograms demonstrate that strong attenuation and significant frequency dispersion due to viscosity are important factors of reducing amplitude and delaying arrival time varying with incidence angle or offset. On the other hand, the amount of scattered energy not only provides an indicator of orientation of fracture sets, but can also provide information about the fracture spacing. Analysis of synthetic seismograms from dry- and fluid-filled fractures indicates that dry-filled fractures show more significant scattering on seismic wavefields than fluid-filled ones, and offset-variations in P-wave amplitude are observable. We also analyze seismic response of an anticlinal trap model that includes a gas-filled fractured reservoir with high attenuation, which attenuates and distorts the so-called bright spot.
Resumo:
In order to carry out high-precision three-dimensional "integration" for the characteristics of the secondary seismic exploration for Biyang Depression, in the implementation process, through a combination of scientific research and production, summed up high-precision seismic acquisition, processing and interpretation technologies suitable for the eastern part of the old liberated areas, achieved the following results: 1. high-precision complex three-dimensional seismic exploration technology series suitable for shallow depression Biyang block group. To highlight the shallow seismic signal, apply goal-based observing system design, trail from the small panel to receive and protect the shallow treatment of a range of technologies; to explain the use of three-dimensional visualization and coherent combination of full-body three-dimensional fine interpretation identification of the 50-100 m below the unconformity surface and its formation of about 10 meters of the distribution of small faults and improve the small block and stratigraphic unconformity traps recognition. 2. high-precision series of three-dimensional seismic exploration technology suitable for deep depression Biyang low signal to noise ratio of information. Binding model using forward and lighting technology, wide-angle observation system covering the design, multiple suppression and raise the energy of deep seismic reflection processing and interpretation of detailed, comprehensive reservoir description, such as research and technology, identified a number of different types of traps. 3. high-precision seismic exploration technology series for the southern Biyang Depression high steep three-dimensional structure. The use of new technology of seismic wave scattering theory and high-precision velocity model based on pre-stack time migration and depth migration imaging of seismic data and other high-precision processing technology, in order to identify the southern steep slope of the local structure prediction and analysis of sandstone bedrock surface patterns provide a wealth of information.