251 resultados para SIMULTANEOUS BLUE
Resumo:
Prussian blue/carbon nanotube (PB/CNT) hybrids with excellent dispersibility in aqueous solutions were synthesized by adding CNTs to an acidic solution of Fe3+, [Fe(CN)(6)](3-) and KCl. Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy and scanning electron microscopy were employed to confirm the formation of PB/CNT hybrids. The PB nanoparticles formed on the CNT surfaces exhibit a narrow size distribution and an average size of 40 nm. The present results demonstrate that the selective reduction of Fe3+ to Fe2+ by CNTs is the key step for PB/CNT hybrid formation. The subsequent fabrication of the PB/CNT hybrid films was achieved by layer-by-layer technique. The thus-prepared PB/CNT hybrid films exhibit electrocatalytic activity towards H2O2 reduction.
Resumo:
In this paper, a simple, label-free and regenerative method was proposed to study the interaction between aptamer and small molecule by using methylene blue (MB+) as an electrochemical indicator. A thiolated capture probe containing twelve bases was firstly self-assembled on gold electrode by gold-sulfur affinity. Aptamer probe containing thirty two bases, which was designed to hybridize with capture DNA sequence and specifically recognize adenosine, was then immobilized on the electrode surface by hybridization reaction. MB+ was abundantly adsorbed on the aptamer probe by the specific interaction between MB+ and guanine base in aptamer probe. MB+-anchored aptamer probe can be forced to dissociate from the sensing interface after adenosine triggered structure switching of the aptamer. The peak current of MB+ linearly decreased with the concentration of adenosine over a range of 2 x 10 (8)- x 10 (6) M with a detection limit of 1 x 10 (8) M. In addition, we examined the selectivity of this electrochemical biosensor for cytidine, uridine and guanosine that belonged to the nucleosides family and possessed 1 similar structure with adenosine.
Resumo:
This work herein reports the approach for the simultaneous determination of heavy metal ions including cadmium (Cd(II)), lead (Pb(II)), and chromium (Cr(VI)) using a bismuth film electrode (BFE) by anodic stripping voltammertry (ASV). The BFE used was plated in situ. Due to the reduction of Cr(VI) with H2O2 in the acid medium, on one hand, the Cr(III) was produced and Cr(VI) was indirectly detected by monitoring the content of Cr(III) using square-wave ASV. On the other hand, Pb(II) was also released from the complex between Pb(II) and Cr(VI). Furthermore, the coexistence of the Cd(II) was also simultaneously detected with Pb(II) and Cr(VI) in this system as a result of the formation of an alloy with Bi. The detection limits of this method were 1.39 ppb for Cd(II), 2.47 ppb for Pb(II) and 5.27 ppb for Cr(VI) with a preconcentration time of 120 s under optimal conditions (S/N = 3), respectively. Furthermore, the sensitivity of this method can be improved by controlling the deposition time or by using a cation-exchange polymer (such as Nafion) modified electrode.
Resumo:
Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq(3)) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl- 1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L'Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages.
Resumo:
The amplified spontaneous emission properties of a 2, 1, 3-benzothiadiazole attached polyfluorene semiconductor polymer were studied. The conjugated polymer shows a high photoluminescence quantum efficiency of 67% and emits a narrowed blue emissive spectrum with a full width at half-maximum of 3.6 nm when optically pumped, indicating better lasing action. A threshold energy as low as 0.22 mJ pulse(-1) cm(-2), a net gain of 40.54 cm(-1) and a loss of 7.8 cm(-1) were obtained, demonstrating that this conjugated polymer could be a promising candidate as the gain medium for the fabrication of blue polymer lasers.
Resumo:
Two simple triphenylamine/oxadiazole derivatives were synthesized and fully characterized; their multifunctionality as highly efficient non-doped blue fluorescence, excellent red phosphorescent host and single-doped two-color based white OLEDs has been demonstrated.
Resumo:
Two bridged triphenylamine-triphenylsilane (BTPASi) hybrids have been designed as host materials for phosphorescent OLEDs; devices with the novel host materials achieve maximum external quantum efficiencies as high as 15.4% for blue and 19.7% for green electrophosphorescence.
Resumo:
A series of carbazole derivatives was synthesized and their electrical and photophysical properties were investigated. It is shown that the triplet energy levels of these hosts are higher than that of the most popular blue phosphorescent material iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C-2'] picolinate (FIrpic) and the most extensively used phosphorescent host material 4,4'-N,N'-dicarbazole-biphenyl (CBP). These new host materials also showed good thermal stability and high glass transition temperatures (T-g) ranging from 78 to 115 degrees C as the linkage group between the carbazoles was altered. Photophysical measurements indicate that the energy transfer between these new hosts and FIrpic is more efficient than that between CBP and FIrpic. Devices incorporating these novel carbazole derivatives as the host material doped with FIrpic were fabricated with the configurations of ITO/NPB (40 nm)/host:FIrpic (30 nm)/BCP (15 nm)/AlQ (30 nm)/LiF (1 nm)/Al (150 nm). High efficiencies (up to 13.4 cd/A) have been obtained when 1,4-bis (4-(9H-carbazol-9-yl)phenyl)cyclohexane (CBPCH) and bis(4-(9H-carbazol-9-yl)phenyl) ether (CBPE) were used as the host, respectively.
Resumo:
A facile and efficient strategy for the syntheses of novel hyperbranched poly(ether amide)s (HPEA) from multihydroxyl primary amines and (meth)acryloyl chloride has been developed. The chemical structures of the HPEAs were confirmed by IR and NMR spectra. Analyses of SEC (size exclusion chromatography) and viscosity characterizations revealed the highly branched structures of the polymers obtained. The resultant hyperbranched polymers contain abundant hydroxyl groups. The thermoresponsive property was obtained from in situ surface modification of abundant OH end groups with N-isopropylacrylamide (NIPAAm). The study oil temperature-dependent characteristics has revealed that NIPAAm-g-HPEA exhibits an adjustable lower critical solution temperature (LCST) of about 34-42 degrees C depending on the grafting degree. More interestingly, the work provided an interesting phenomenon where the HPEA backbones exhibited strong blue photoluminescence.
Resumo:
A new pyrophosphate long-lasting phosphor with composition of Ca1.96P2O7:0.02Eu(2+), 0.02Y(3+) is synthesized via the high-temperature solid-state reaction method. Its properties are systematically investigated utilizing XRD, photoluminescence, phosphorescence and thermoluminescence (TL) spectra. The phosphor emits blue light that is related to the characteristic emission of Eu2+ due to 5d-4f transitions. For the optimized sample, bright blue long-lasting phosphorescence (LLP) could be observed by naked eyes even 6 h after the excitation source is removed. The TL spectra show that the doping of Y3+ ions greatly enhanced intensity of 335 K peak and created new TL peak at about 373 K that is also responsible for the blue LLP. Based on our study, Y3+ ions are suggested to act as electron traps to improve the performance of the blue phosphorescence of Eu2+ such as intensity and persistent time.
Resumo:
Phosphate long lasting phosphorescence (LLP) phosphors with composition of (Zn1-xTmx)(2)P2O7 were prepared by the high-temperature solid-state method. Their properties were systematically investigated utilizing XRD, photoluminescence, phosphorescence and thermoluminescence (TL) spectra. These phosphors emit blue light that is related to the characteristic emission due to the D-1(2)-H-3(6), D-1(2)-H-3(4) and (1)G(4)-H-3(6) transitions of Tm3+. After the UV light excitation source was switched off, the bright blue long lasting phosphorescence can be observed which could last for more than 1 h in the limit of light perception of dark-adapted human eyes (0.32 mcd/m(2)). Two TL peaks at 336 K and 415 K appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.67 eV and 0.97 eV, respectively.Also, the mechanism was discussed in this report.
Resumo:
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+, Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f(6)5d(1)-S-8(7/2) transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.