307 resultados para SILVER BROMIDE CLUSTERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the preformed cluster model approach, the values of the preformation factors have been deduced from the experimental cluster decay half-lives assuming that the decay constant of the heavy-ion emission is the product of the assault frequency, the preformation factor and the penetrability. The law according to which the preformation factors follow a simple dependence on the mass of the cluster was confirmed. Then predictions for some of the most possible cluster decays are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an introduction to the application of ion traps and storage devices for cluster physics. Some experiments involving cluster ions in trapping devices such as Penning traps, Paul traps, quadrupole or multipole linear traps are briefly discussed. Electrostatic ion storage rings and traps which allow for the storage of fast ion beams without mass limitation are presented as well. We also report on the recently developed mini-ring, a compact electrostatic ion storage ring for cluster, molecular and biomolecular ion studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na-2 and Na-4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na-4 cluster is in better agreement with experiment than the GW absorption spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycarbonate (PC) membranes were irradiated with swift heavy ions and latent tracks were created along the ions' trajectories. Nanopores, diameters between 100 and 500 nm, were obtained after illuminating the membranes with UV light and etching in NaOH solution. Silver nanowires were produced in the etched ion-track membranes by electrochemical deposition. The morphology and crystallinity of the silver nanowires were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Under certain conditions (deposition voltage 25 mV, current density 1-2 mA.cm(-2), temperature 50 degrees C, electrolyte 0.1 mol.L-1 AgNO3), single-crystalline silver nanowires with preferred orientation along the [111] direction can be synthesized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the frame of time-dependent density functional theory, the: dynamical polarizabilities of Na-5, Na-6 and Na-7 clusters are calculated using a time-dependent local density approximation. By using Fourier transformation, the optical absorption spectra of Na-5, Na-6 and Na-7 clusters are obtained from their dynamical polarizabilities. It is shown that experimentally measured optical absorption spectra of Na-5, Na-6 and Na-7 clusters are reproduced in our calculations. Furthermore, the calculations of Na-6 and Na-7 clusters are in good agreement with the results of configuration interaction method. Compared with the three-dimensional structure of Na-6, the calculated optical absorption spectra of Na-6 with the two-dimensional structure are more close to the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, silver-loaded TiO2 photocatalyst was prepared by photochemical impregnation method and characterized by transmission electron microscopy (TEM), diffuse reflectance spectra (DRS), photooxidation of phenol and photoreduction of Cr(VI). Electron paramagnetic resonance (EPR) was used to detect photoproduced paramagnetic radicals. The correlation of photocatalytic activity and photogenerated reactive species was discussed, and the mechanism of silver-loaded TiO2 for enhancement of photocatalytic activity was elucidated. The results show that deposited silver on TiO2 Surface acts as a site where electrons accumulate. The better separation between electrons and holes on the modified TiO2 surface allowed more efficiency for the oxidation and reduction reactions. The enhanced photocatalytic activity was mainly attributed to the increased amounts of O-2(.-) reactive species and surface Ti3+ reactive center on silver-loaded TiO2 photocatalyst. (C) 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver impregnated H-ZSM-5 zeolite catalysts with silver loading from 3 to 15 wt.% were investigated for the selective catalytic reduction (SCR) of NOx with CH4 in the excess of oxygen. X-ray diffraction (XRD) and UV-Vis measurements established the structure of silver catalysts. A relationship between the structure of silver catalysts and their catalytic functions for the SCR of NOx by CH4 was clarified. The NO conversion to N-2 showed a S-shape dependence on the increase of Ag loading. No linear dependence of catalytic activity on the amount of silver ions in the zeolite cation sites was observed. Contrastively, the activity was significantly enhanced by the nano-sized silver particles formed on the higher Ag loading samples (greater than or equal to7 wt.%). Temperature programmed desorption (TPD) and temperature programmed reduction (TPR) studies showed that nano-silver particles provided much stronger adsorption centers for active intermediates NO3-(s) on which adsorbed NO3-(s) could be effectively reduced by the activated methane. Silver ions in the zeolite cation sites might catalyze the reaction through activation of CH4 at lower temperatures. Activated CH4 reacted with NO3-(s) adsorbed on nano-silver particles to produce N-2 and CO2. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using microporous zeolites as host, sub-nanometric ZnO clusters were prepared in the micropores of the host by the incipient wetness impregnation method. A small amount of sub-nanometric ZnO clusters were introduced into the channels of HZSM-5 zeolite, whereas a large quantity of sub-nanometric ZnO clusters can be accommodated in the supercages of HY zeolite and no macrocrystalline ZnO exists on the extra surface of the HY material. The vibrations of the zeolite framework and ZnO were characterized by UV Raman spectroscopy. The optical properties of these ZnO clusters were studied by UV-visible absorption spectroscopy and laser-induced luminescence spectroscopy. It is found that there are strong host-guest interactions between the framework oxygen atoms of zeolite and ZnO clusters influencing the motions of the framework oxygen atoms. The interaction may be the reason why ZnO clusters are stabilized in the pores of zeolites. Different from bulk ZnO materials, these sub-nanometric ZnO clusters exhibit their absorption onset below 265 nm and show a purple luminescence band (centered at 410-445 nm) that possesses high quantum efficiency and quantum size effect. This purple luminescence band most likely originates from the coordinatively unsaturated Zn sites in sub-nanometric ZnO clusters. On the other hand, the differences in the pore structure between HZSM-5 and HY zeolites cause the absorption edge and the purple luminescence band of ZnO clusters in ZnO/HZSM-5 show a red shift in comparison with those of ZnO clusters in ZnO/HY.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiphoton ionization of the hydrogen,bonded pyrrole-water clusters (C4H5N)(n)(H2O)(m) is studied with a reflectron-time of flight mass spectrometer at 355 mn. With increasing partial concentration of pyrrole in a gas mixture source, a series of poly-pyrrole-water binary-mixed cluster ions can be observed, including unprotonated cluster ions [(C4H5N)(x)(H2O)(y)](+), protonated cluster ions [(C4H5N)(x)(H2O)(y)](+) and dehydrogenated cluster ions [(C4H4N)(C4H5N)(x)(H2O)(y)](+). Ab initio calculations of their structures, bond strengths, charge distributions and reaction energies are carried out. Stable structures of these clusters are obtained from the calculations. A probable formation mechanism of the cluster ions [(C4H5N)(x)(H2O)(y)](+), [(C4H5N)(x)(H2O)(y)]H+ and [(C4H4N)(C4H5N)(x) (H2O)(y)](+) is supposed to be the ionization of clusters followed by dissociation.