149 resultados para Reynolds, Myra,
Resumo:
The Karman vortex shedding is totally suppressed in flows past a wavy square-section cylinder at a Reynolds number of 100 and the wave steepness of 0.025. Such a phenomenon is illuminated by the numerical simulations. In the present study, the mechanism responsible for it is mainly attributed to the vertical vorticity. The geometric disturbance on the rear surface leads to the appearance of spanwise flow near the base. The specific vertical vorticity is generated on the rear surface and convecting into the near wake. The wake flow is recirculated with the appearance of the pair of recirculating cells. The interaction between the upper and lower shear layers is weakened by such cells, so that the vortex rolls could not be formed and the near wake flow becomes stable.
Resumo:
The numerical simulation of flows past flapping foils at moderate Reynolds numbers presents two challenges to computational fluid dynamics: turbulent flows and moving boundaries. The direct forcing immersed boundary (IB) method has been developed to simulate laminar flows. However, its performance in simulating turbulent flows and transitional flows with moving boundaries has not been fully evaluated. In the present work, we use the IB method to simulate fully developed turbulent channel flows and transitional flows past a stationary/plunging SD7003 airfoil. To suppress the non-physical force oscillations in the plunging case, we use the smoothed discrete delta function for interpolation in the IB method. The results of the present work demonstrate that the IB method can be used to simulate turbulent flows and transitional flows with moving boundaries.
Resumo:
数值摄动算法将流体动力学效应耦合进NS方程组和对流扩散(CD)方程离散的数学基本格式(MBS),特别是耦合进最简单的一阶迎风和二阶中心格式之中,由此构建成一系列新的摄动格式(PS).构建PS的主要步骤是将MBS中的通量重构为步长的幂级数,利用空间分裂和导出的高阶流体动力学线性关系式,并引入下游不影响上游的对流运动规律,通过消除重构格式修正微分方程的截断误差诸项求出幂级数的待定系数,由此获得非线性PS.PS的项是MBS中对应项与R△x(及λR△x)之简单多项式的乘积,R△x和λ分别是网格Reynolds数和网格CFL数.PS和MBS使用相同结点,简单性彼此相当,但PS精度高,稳定范围大,例如PS包含了许多绝对稳定高阶迎风和中心有限差分(FD)格式和绝对正型有限体积(FV)格式,这些格式对网格Reynolds数的任意值均为不振荡格式.数值摄动算法因此是构建高精度不振荡CFD格式的新方法.PS用于计算不可压缩流,可压缩流,液滴萃取传质,微通道两相流等,均获得良好数值结果或与已有Benchmark解一致的数值结果.已有文献称数值摄动算法为新型高精度方法和高算法,文中也讨论了一些值得进一步研究的课题
Resumo:
利用高智提出的数值摄动算法,把求解对流扩散方程常用三阶迎风格式(3-UDS)(粘性项和对流项分别用二阶中心格式和3-UDS离散)进行了高精度重构,包括使用离散单元内所有节点的全域重构和分别使用上下游节点的上下游重构,得到两类新的更高阶精度迎风差分格式,称为高的迎风差分格式(记作GUDS)。讨论了GUDS的数学性质,GUDS比原来的3-UDS精度显著提高;全域重构的GUDS和3-UDS均为条件稳定,一些上下游重构GUDS为绝对稳定。本文通过稳定性分析和四个算例(一维常系数、变系数、非线性及二维变系数对流扩散方程)的计算证实了GUDS的优良性质。上下游重构GUDS为避免在3-UDS中使用人工粘性提供了一条有效途径,适合于求解高Reynolds数线性和非线性问题。
Resumo:
将作者提出的数值摄动算法改进为区分离散单元内上游和下游并分别对通量进行高精度重构的双重数值摄动算法,与原(单重)摄动算法相比,双重摄动算法既提高了格式精度又明显扩大了格式的稳定域范围,利用双重摄动算法,即分别利用上游和下游基点变量的摄动重构将高阶流体力学关系及迎风机制耦合进二阶中心格式之中,由此构建了对流扩散方程的对网格Reynolds数的任意值均稳定(绝对稳定)高精度(四阶和八阶精度)三基点中心TVD差分格式,通过解析分析以及3个算例计算证实了构建格式的优良性能;3个算例包括一维线性、非线性(Burgers方程)和二维变系数对流扩散方程,数值计算表明:构建的格式在粗网格下不振荡,构建格式在粗网格时的最大误差L∞和均方误差L2与二阶中心格式在细网格时的相应误差一致,对线性方程,构建格式在细网格下可达到L2精度阶
Resumo:
对来流Mach数2.25及6的平板边界层湍流进行了直接数值模拟,并通过与理论、实验及他人计算结果的对比对数值结果进行了验证。基于直接数值模拟得到的湍流数据库,对常用的湍流模型进行了先验评估。评估的湍流模型有k-e模型(包括标准k-e模型、可实现的k-e模型及低Reynolds数k-模型)、SA模型及BL模型。结果显示,可实现的k-e模型的具有较好的预测能力,而标准k-e模型预测的湍流粘性系数偏高。SA模型在边界层内层预测准确度较高,而在外层预测值偏高。对于高Mach数情况,原始的BL模型严重低估了内-外层交界位置,造成湍流粘性系数预测值偏低。作者通过修改模型系数及内-外层交界位置对BL模型进行了修改,修改后模型预测的湍流粘性系数与DNS给出的值吻合较好
Resumo:
Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migration of gas bubbles in an immiscible bulk liquid with a temperature gradient at moderate to large Marangoni number is simulated numerically. Constant material properties of the two phases are assumed. Steady state of the motion can always be reached. The terminal migration velocity decreases monotonously with the increase of the Marangoni number due to the wrapping of isotherms around the front surface of the bubble. Good agreements with space experimental data and previous theoretical and numerical studies in the literature are evident. Slight deformation of bubble is observed, but no distinct influence on the motion occurs. It is also found that the influence of the convective transport of heat inside bubbles cannot be neglected at finite Marangoni number, while the influence of the convective transport of momentum inside bubbles may be actually negligible.
Resumo:
A linear spatio-temporal stability analysis is conducted for the ice growth under a falling water film along an inclined ice plane. The full system of linear stability equations is solved by using the Chebyshev collocation method. By plotting the boundary curve between the linear absolute and convective instabilities (AI/CI) of the ice mode in the parameter plane of the Reynolds number and incline angle, it is found that the linear absolute instability exists and occurs above a minimum Reynolds number and below a maximum inclined angle. Furthermore, by plotting the critical Reynolds number curves with respect to the inclined angle for the downstream and upstream branches, the convectively unstable region is determined and divided into three parts, one of which has both downstream and upstream convectively unstable wavepackets and the other two have only downstream or upstream convectively unstable wavepacket. Finally, the effect of the Stefan number and the thickness of the ice layer on the AI/CI boundary curve is investigated.
Resumo:
The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and energy transition along the water depth were calculated on the basis of the computational results of velocity and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed or water surface. The energy borrowed from the local flow in the vegetated region could not provide for spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence source due to vegetation and energy transference due to vegetation, where the second effect was the strongest one. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
为了模拟波浪与水流的联合作用,基于Reynolds平均的Navier-Stokes方法,构建了一个三维波流数值水槽. 使用该模型对不同出流边界条件进行了对比分析. 结果表明:引入合理的入流和出流边界条件,可以保证在计算稳定后,水槽平均水面基本保持不变. 垂向时均流速分布的计算结果与实验数据吻合良好. 这表明:该波流数值水槽具有较好的波流特性,可用于计算波浪与水流、以及与三维固定结构之间相互作用.
Resumo:
The interannual anomalies of horizontal heat advection in the surface mixed layer over the equatorial Pacific Ocean in an assimilation experiment are studied and compared with existing observational analyses. The assimilation builds upon a hindcast study that has produced a good simulation of the observed equatorial currents and optimizes the simulation of the Reynolds sea surface temperature (SST) data. The comparison suggests that the assimilation has improved the simulation of the interannual horizontal heat advection of the surface mixed layer significantly. During periods of interrupted current measurements, the assimilation is shown to produce more meaningful anomalies of the heat advection than the interpolation of the observational data does. The assimilation also shows that the eddy heat flux due to the correlation between high-frequency current and SST variations, which is largely overlooked by the existing observational analyses, is important for the interannual SST balance over the equatorial Pacific. The interannual horizontal heat advection anomalies are found to be sensitive to SST errors where oceanic currents are strong, which is a challenge for ENSO prediction. The study further suggests that the observational analyses of the tropical SST balance based on the TAO and the Reynolds SST data contain significant errors due to the large gradient errors in the Reynolds SST data, which are amplified into the advection anomalies by the large equatorial currents.
Resumo:
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-epsilon turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
Resumo:
我国南海海水运动复杂、海底地形多变,是内波的多发区域。目前关于南海内波的报道、观测和研究主要集中在Luzon海峡到南海东北部东沙群岛附近海域。2005年4月16日始,中国科学院海洋研究所和中国海洋石油总公司联合在海南岛东部的文昌站进行了为期近半年的连续定点海洋调查,观测资料清楚地表明,这一海域陆架上长期存在着比较规则的潮频内波现象。 从航天图片和SAR卫星图片上捕捉到的信息来看,南海西北部陆架上(文昌站附近海域)有些潮频内波并非从Luzon海峡传播而来,而极有可能是局地正压潮与陆坡作用生成的。本文用数值模拟的方法来证明这一观点。 首先,我们从Reynolds方程组出发,用差分方法和有限元方法建立了一个连续层结海水中正压潮与海底地形相互作用生成潮频内波的二维非线性数值模式。我们用该模式研究了正压潮流流经下降地形、上升地形、凸起地形、凹陷地形等几种典型的海底地形时生成内波的过程,探讨了该数值模式中各个参数对生成内波的影响。 然后,我们从文昌站海洋科学调查的温盐深数据资料中提取了该海区的密度、跃层厚度和强度等海洋环境参数;用调和分析法从海流流速、流向数据中提取了正压潮潮流成分及各潮流分量的速度、振幅、方向等与数值模式相关的信息。我们把这些从实测资料中提取出的海洋环境和潮流信息应用到内波生成的非线性数值模式中,模拟了文昌站附近海域正压潮流与陆坡作用生成内波的过程。模拟结果表明,南海局地潮流与陆坡作用足以生成能够被SAR捕捉到的大振幅内波。从而我们可以断定,南海西北部陆架上有些潮频内波是天文潮与陆坡作用生成,然后传播到陆架上的。
Resumo:
There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.