310 resultados para RARE EARTH ELEMENTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When alkaline earth ions in borates, phosphates or borophosphates [SrB4O7, SrB6O10, BaB8O13, MBPO5 (M=Ca,Sr)] are substituted partially and aliovalently by trivalent rare earth ions such as Sm3+, Eu3+, these rare earth ions can be reduced to divalent state by the produced negative charge vacancy V-M". The matrices must have appropriate structure containing a rigid three-dimensional network of tetragonal AO(4) groups (A=B,P). These groups can surround and isolate the produced divalent RE2+ ions from the reaction with oxygen. Therefore, this reduction reaction can be carried out even in air at high temperature. The produced divalent rare earth ions can be detected by luminescence and XANES methods and their spectroscopic properties are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth (Eu3+, Tb3+)-doped Ca2Y8(SiO4)(6)O-2 luminescent thin films were dip-coated on silicon and quartz glass substrates through a sol-gel route. X-ray diffraction (XRD), scanning electron microscopy (SEM) and luminescence excitation and emission spectra as well as luminescence decays were used to characterize the resultant films. The results of XRD reveal that these films remain amorphous below 700 degreesC, begin to crystallize at 800 degreesC, and crystallize completely around 1000 degreesC with an oxyapatite structure. The grain structure of the film can be seen clearly from SEM micrographs, where particles with various shape and average size of 250 nm can be resolved. The Eu3+ and Tb3+ ions show their characteristic red (D-5(0)-F-7(2)) and green (D-5(4)-F-7(5)) emission in the films with a quenching concentration of 10 and 6 mol% (of Y3+), respectively. The lifetime of Eu-3divided by increases with the heat treatment temperature front 700 to 1100 degreesC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurements of VUV-UV photoluminescence emission (PL) and photoluminescence excitation (PLE) spectra of rare earth ions activated strontium orthophosphate [Sr-3(PO4)(2):RE, RE = Ce, Sm, Eu, Tb] are performed. Whenever the samples are excited by VUV or UV light, the typical emission of Ce-3+,Ce- Sm3+, Eu3+, Eu2+ and Tb3+ ions can be observed in PL spectra, respectively. The charge transfer bands (CTBs) of Sm3+ and Eu3+ are found, respectively, peaking at 206 and 230nm. The absorption bands peaking in the region of 150-160 nm are assigned to the host lattice sensitization bands, i.e., the band-to-band transitions of PO43- grouping in Sr-3(PO4)(2). It is speculated that the first f-d transitions of Sm3+ (Eu3+), and the CTB of Tb3+ are, respectively, located around 165 (14 3) and 167 urn by means of VUV-UV PLE spectra and relational empirical formula, these f-d transitions or CT bands are included in the bands with the maxima at 150-160 nm, respectively. The valence change of europium from trivalent to divalent in strontium orthophosphate prepared in air is observe by VUV-UV PL and PLE spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of rare-earth ion Eu3+ on hemoglobin (Hb) was studied by using two-dimensional Raman correlation spectroscopy. The results show that with the variation of Eu3+ concentrations as perturbation, the oxidation state of Hb and its spin state are both sensitive to the perturbation. Eu3+ added to Hb affects the oxidation and spin state synchronously. The four structure-sensitive bands of Hb are more accessible to the Eu3+ than other bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promoter effects of rare earth ions on the electrocatalytic oxidation of methanol at the Pt electrode were studied using the cyclic voltammetry and stable polarization techniques. It was found for the first time that Eu, Ho, Dy ions could accelerate the electrocatalytic oxidation of methanol at the Pt electrode, while Lu, Pr, Yb, Sm ions showed inhibitor effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclonal antibody technique was employed to detect the conformational change of calmodulin induced by metal ions. Bovine calmodulin was firstly modified by 2,4-dinitrofluorobenzene to improve its immunogenicity, then, the derived protein was saturated with trivalent europium ions and injected to Balb/c mice as antigen. After four times of immunization, a corresponding antibody was detected and its titer in serum was determined as 1 : 12 000. By fusing of the spleen cells with hybridoma cells, a europium induced conformation-specific anti-calmodulin monoclonal antibody cell strain named as 2C3 was produced successfully. The molecular recognition ability of antibody to apocalmodulin and holocalmodulin showed a significant difference, indicating that this antibody could be applied to the studies of different effects of metal ions on the conformational change of calmodulin and its interaction with target molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrathin multilayer films of a rare-earth-containing polyoxometalate Na-9[Eu(W5O18)(2)] (EW) and Poly (allyamine hydrochloride) (PAH) have been prepared by layer-by-layer self-assembly from dilute aqueous solutions. The fabrication process of the EW/PAH multilayer films was followed by UV-vis spectroscopy and ellipsometry, which show that the deposition process is linear and highly reproducible from layer to layer. An average EW/PAH bilayer thickness of ca. 2.1 nm was determine,by ellipsometry. In addition, the scanning electron microscopy (SEM) image of the EW/PAH film indicates that the film sufface is relatively uniform and smooth. The photoluminescent properties of these films were also investigated by fluoresence spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth complex Eu(DBM)(3)phen (DBM: dibenzoylmethane, phen: 1.10-phenanthroline) hits been incorporated into unmodified MCM-41 and modified MCM-41s by aminopropyltriethoxysilane (APTES) or N-[(3-triethoxysilyl)propyl]ethylenediamine(TEPED). Thus, the assemblies of unmodified or modified MCM-41s with rare earth (RE) complex have been obtained. XRD spectra. NMR spectra. diffuse reflectance spectra. and the luminescence spectra were used to characterize the pure RE complex and the corresponding assemblies. The assemblies have better luminescence properties under UV irradiation. and their fluorescence lifetimes on the excited state are longer than that of the corresponding pure complex. The possible mechanisms are also discussed in the context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth complex (C5H9C9H6)(3)SmCl-Li+ (THF)(4)( I ) was synthesized by reacting anhydrous SmCl3 with two equivalents of C5H9C9H6Li. From mix-solvent of THF and hexane, red color single crystals were obtained. The crystal belongs to a cubic system, space group P2(1)3 with unit cell parameters a= b=c= 1. 754 0(2) nm, alpha=beta=gamma=90degrees, V=5. 396 4(11) nm(3), Z = 4. The ten-coordinated samarium atom is bonded to three cyclopentylindenyl rings and a chlorine atom to form the anionic part of the title complex, ring centroids and the chlorine atom form a tortured tetrahedron around samarium. In the cationic part, lithium atom coordinates to four oxygen atoms of THF molecules to form a normal tetrahedron. The Sm-C(within the same ring) distance varies from 0. 268 to 0. 299 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescent organic-inorganic composite films incorporating the rare-earth-containing polyoxometalate Na-9[EuW10O36] (EW) and poly(allylamine hydrochloride) (PAH) have been prepared by the layer-by-layer self-assembly method. UV-vis spectroscopy and ellipsometry were used to follow the fabrication process of the EW/PAH composite films. The experimental results show that the deposition process is linear and highly reproducible from layer to layer. An average EW/PAH bilayer thickness of ca. 2.1 nm was determined by ellipsometry. In addition, scanning electron microscopy and atomic force microscopy images of the EW/PAH composite films indicate that the film surface is relatively uniform and smooth. The photoluminescent properties of these films were investigated by fluorescence spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic accumulation and species of rare earth in rat liver were investigated by ICP-MS and chromatography after the rats were fed by a low dose of mixed rare earth for a long time or the administration of a high dose of lanthanum for a short time. It was found that the content of rare earth in the liver increased with the arising of dose of drug delivery. Their accumulation rate was different, for example, La>Ce>Nd>Pr. The protein which could combine,with rare earth specially were not gotten through chromatography. It was suggested that rare earth could bind to many proteins voluntarily, such as some important enzymes and it might be separated from the combined proteins under certain conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth and lead ions (Eu3+, Tb3+, Dy3+, Pb2+) doped Ca2Y8 (SiO4)(6)O-2 and Ca2Gd8(SiO4)(6)O-2 thin films have been dip- coated on silicon and quartz glass substrates through the sol- gel route. X- Ray diffraction (XRD), TG- DTA, scanning electron microscopy (SEM), atomic force microscopy (AFM), FT- IR and luminescence excitation and emission spectra as well as luminescence decays were used to characterize the resulting films. The results of XRD reveal that these films remain amorphous below 700 degreesC, begin to crystallize at 800 degreesC and crystallize completely around 1000 degreesC with an oxyapatite structure. The grain structure of the film can be seen clearly from SEM and AFM micrographs, where particles with various shapes and average size of 250 nm can be resolved. Eu3+ and Tb3+ show their characteristic red (D-5(0)-F-7(2)) and green (D-5(4) - F-7(5)) emission in the films with a quenching concentration of 10 and 6 mol% (of Y3+), respectively. The lifetime and emission intensity of Eu3+ increase with the temperature treatment from 700 to 1100 degreesC, while those of Tb3+ show a maximum at 800 degreesC. Energy transfer phenomena have been observed by activating the oxyapatite film host- lattice Ca2Gd8(SiO4)(6)O-2 with Tb3+ (Dy3+). In addition, Pb2+ can sensitize the Gd3+ sublattice in Ca2Gd8(SiO4)(6)O-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this presentation, nanocrystalline YVO4:A (A=Eu3+, Dy3+, SM3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography (micro-molding in capillaries). XRD, FT-IR, AFM and optical microscope, absorption spectra, photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degrees C and the crystallinity increased with the increase of annealing temperatures. Transparent nonpattemed phosphor films were uniform and crack free, which mainly consisted of grains with an average size of 90nm. Patterned crystalline phosphor film bands with different widths (5-30 mu m) were obtained. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films due to an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in YVO4 film host. The optimum concentration for Eu3+ was determined to be 7 mol% and those for Dy3+, Sm3+, Er3+ were 2 Mol% of Y3+ in YVO4 films, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New luminescent hybrid mesoporous material was prepared by covalent anchoring rare earth complex onto MCM-41 by a postsynthesis approach. The monomer (referred to here as PABI) which plays double roles, i.e., as a ligand for lanthanide ion and as an organic functional molecule to modify MCM-41 is synthesized and characterized by H-1 NMR and MS. The fluorescence spectra show clearly that the hybrid mesoporous material possesses excellent luminescence characteristics. The hybrid mesoporous material retains the structure of MCM-41 after modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of rare-earth ion Er3+ On myoglobin(Mb) was studied by using Resonance Raman spectroscopy. The results show that with the variation of Er3+ concentrations, both the oxidation state and spin state of Mb are sensitive to the perturbation of Er3+. Er3+ added to Mb affects the oxidation and spin state synchronously. The structure-sensitive groups of Mb are more accessible to the Er3+ than other groups. According to the fluorometry and CD spectra studied and our results as mentioned above, we considered that Er3+ does not interact with heme directly, and Er3+ probably leads to the conformational changes of Mb due to the change of oxidation and spin state of Heme.