179 resultados para Proximate composition
Resumo:
We report a method for estimating the positions of charge transfer (CT) bands in Eu3+-doped complex crystals. The environmental factor ( he) influencing the CT energy is presented. he consists of four chemical bond parameters: the covalency, the bond volume polarization, the presented charge of the ligand in the chemical bond, and the coordination number of the central ion. These parameters are calculated with the dielectric theory of complex crystals. The relationship between the experimental CT energies and calculated environmental factors was established by an empirical formula. The calculated values are in good agreement with the experimental results. Such a relationship was confirmed by detailed analysis. In addition, our method is also useful to predict the charge-transfer position of any other rare earth ion.
Resumo:
The crystallization behavior and morphology of the crystalline-crystalline poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer (PEO-b-PCL) was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), and hot-stage polarized optical microscope (POM). The mutual effects between the PEO and PCL blocks were significant, leading to the obvious composition dependence of the crystallization behavior and morphology of PEO-b-PCL. In this study, the PEO block length was fixed (M-n = 5000) and the weight ratio of PCL/PEO was tailored by changing the PCL block length. Both blocks could crystallize in PEO-b-PCL with the PCL weight fraction (WFPCL) of 0.23-0.87. For the sample with the WFPCL of 0.36 or less, the PEO block crystallized first, resulting in the obvious confinement of the PCL block and vice versa for the sample with WFPCL of 0.43 or more. With increasing WFPCL, the crystallinity of PEO reduced continuously while the variation of the PCL crystallinity exhibited a maximum. The long period of PEO-b-PCL increased with increasing WFPCL from 0.16 to 0.50 but then decreased with the further increase of WFPCL due to the interaction of the respective variation of the thicknesses of the PEO and PCL crystalline lamellae.
Resumo:
A series of acrylonitrile-butadiene-styrene (ABS) with different rubber content were prepared by diluting ABS grafting copolymer containing 60% rubber with a styrene-acrylonitrile copolymer. ABS prepared were blended with bisphenol-A-polycarbonate (PC) at the ratio of 70/30, 50/50, and 30/70 to prepare PC/ABS blends. Influence of rubber content in ABS on the properties of ABS and PC/ABS blends were investigated. PC/ABS blends with different compositions got good toughness when the rubber in ABS increased to the level that ABS itself got good toughness. The tensile properties and processability of PC/ABS blends decreased with the increase of the total rubber content introduced into the blends. ABS with the rubber content of 30 wt% is most suitable to be used to prepare PC/ABS blends. The rubber content in ABS affected the viscosity of ABS, and subsequently the viscosity ratio of PC to ABS. As a result, the morphology of PC/ABS blends varied. The increase of rubber content in ABS results in finer structure of PC/ABS blends.
Resumo:
In preparing copolymer of the same composition by batch process in two - component copolymerization it is necessary to keep the monomer ratio constant by replenishing the fraction of the more reactive monomer. In this paper a calculation method for monomer feeding is derived, which iscapable of controlling the composition of cooligomer during the course of reaction. Some cooligomers of acrylonitrile and butadiene with relatively the same compositions have been prepared using the replenishing method. The method would be useful for other two - component copolymerization ion process.
Resumo:
A series of liquid crystalline copolyethers has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane and different alpha,omega-dibromoalkanes [coTPP(n/m)]. In this report, coTPPs having n = 5, 7, 9, 11 and m = 12 are studied, which represent copolyethers having both varying odd number and a fixed even number of methylene units. The compositions were fixed at an equal molar ratio (50/50). These coTPPs(nlm) show multiple phase transitions during cooling and heating in differential scanning calorimetry experiments. The undercooling dependence of these transitions is found to be small, indicating that these transitions are close to equilibrium, Although the coTPPs possess a high-temperature nematic (N) phase, the periodicity order along the chain direction is increasingly disturbed when the length of the odd-numbered methylene units decreases from n 11 to 5. in the coTPPs(5/12, 7/12, and 9/12), wide-angle X-ray diffraction experiments at different temperatures show that, shortly after the N phase formation during cooling, the lateral molecular packing improves toward a hexagonal lattice, as evidenced by a gradual narrowing of the scattering halo. This process represents the possible existence of an exotic N phase, which serves as a precursor to the columnar (Phi(H)) phase. A further decrease in temperature leads to a (PH phase having a long-range ordered, two-dimensional hexagonal lattice. In coTPP(11/12), the phase structures are categorized as highly ordered and tilted, smectic and smectic crystal phases, similar to homoTPPs, such as the smectic F (S-F) and smectic crystal G (SCG) phases. An interesting observation is found for coTPP(9/12), wherein a structural change from the high-temperature Phi(H) phase to the low-temperature S-F phase occurs. It can be proven that, upon heating, the well-defined layer structure disappears and the lateral packing remains hexagonal. The overall structural differences in this series of coTPPs between those of the columnar and highly ordered smectic phases are related to the disorders introduced into the layer structure by the dissimilarity of the methylene unit lengths in the comonomers.
Resumo:
The glycoproteins and glycolipids from membranes of virulent strain Z and avirulent strain M of Mycoplasma hyopneumoniae have been compared. The proteins and the glycoproteins were identified by SDS-polyacrylamide gel electrophoresis and concanavalin A-biotin labeling, respectively. The membrane preparation contained approximately 34 protein bands with molecular weights between 20 KD and 100 KD. The concanavalin A-biotin system reacted with a glycoprotein of a molecular weight of approximately 28,000 from avirulent strain M and did not react with the correspondent band from virulent strain Z. The membrane glycolipids of both strains consisted of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), and the percentages of 16:0, 18:0, and 18:1 fatty acids comprised more than 80% of the total fatty acids of membrane glycolipids. The 18:0 fatty acid of MGDG in avirulent strain M was twofold higher than that of virulent strain Z.
Resumo:
Thin films of PSt/PMAA and PEO-PSt-PEO block polymers were deposited on a polystyrene substrate by solution adsorption (with or without solvent treatment), and the film surfaces were characterized by means of XPS. Direct solvent - casting of PEO-PSt-PEO from benzene solutions resulted in PSt-rich surfaces, whereas PMAA richer surfaces were obtained for PSt/PMAA films cast from DMF solutions. Moreover, solvent treatment after casting had profound effect on the film surface composition. Treatment with water markedly increased the surface concentration of polar PEO segments. In the case of PSt-PMAA block polymers, the PSt content on the surface increased in the order of water < ethanol < cyclohexane < petroleum ether, the last-named giving films with almost pure PSt surface. It is well worth noticing that the bulk composition had little to do with the surface composition for both PSt/PMAA and PEO-PSt-PEO block polymers within the composition range investigated when subsequent solvent treatment was applied.
Resumo:
CARBON
Resumo:
Since the discovery of multiple bioactivities for agarobiose oligomers, a quantitative method has been in great need to monitor the agarobiose oligomers. This report demonstrates that agarobiose oligomers can be separated with high resolution in HPLC after introducing a-naphthylamine into compounds. Agarobiose oligomers ranged from biose to decaose were isolated by Sephadex column. HPLC analysis indicated that each oliomer could be quantified with good linearity and a low detection limit of 0.1-4 mug/ml. The chromatographic profiles of agaro-oligosaccharides with different hydrolysis modes (hydrochloride, citric acid, solid acid, and hydroxyl radical degradation) showed that agarobiose could be obtained more than 57.8% using solid acid mediated hydrolysis, while hydrochloride acid could degrade agar into a series of agaro-oligosaccharides from biose to decaose. The yield of oligosaccharides was low if hydrolyzed by citric acid. The Fenton degradation can increase the speed of hydrolysis, but the product was complex. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In our screening of marine actinomycetes for bioactive principles, three novel antibiotics designated as chandrananimycin A (3c), B (3d) and C (4) were isolated from the culture broth of a marine Actinomadura sp. isolate M045. The structures of the new antibiotics were determined by detailed interpretation of mass, 1 D and 2 D NMR spectra.
Resumo:
The influence of diet on lipid and fatty acid composition of the brine shrimp Artemia salina nauplii was investigated. Various diets with different lipid composition and fatty acid profiles were fed to nauplii for 2 weeks. The lipid composition of microalgal diets, Isochrysis galbana, Phaeodactylum tricornutum and Nannochloropsis oculata and baker's yeast was analyzed. Newly hatched nauplii were examined before the feeding experiment. It was shown that Artemia was able to incorporate and selectively concentrate some dietary lipids. Depot lipids were more sensitive to changes in the dietary lipid composition than the main structural lipids, polar lipids and sterols. Variations in the content of the lipid classes correlated with stage of development of the animal. The fatty acid composition of the animal varied with that of diet. The concentrations of saturated fatty acids were apparently supported in the nauplii by biosynthesis de novo. The acid 16:1(n-7) originated from the food. The concentration range of n-6 polyunsaturated fatty acids (PUFAs) remained constant through the accumulation from the diet. The proportion of n-3 PUFAs varied with their level in the diet. The dynamics of alteration of 20:5(n-3) content in Artemia fed on Isochrysis, which is poor in this acid, suggested a limited capacity for elongation and desaturation of 18:3(n-3) to 20:5(n-3). None of the diets provided dietary input of 22:6(n-3). (C) 1998 Elsevier Science Inc. All rights reserved.
Resumo:
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 mu m large holes; the net can be silicified. The silica layers forming the lamellar zone are approximate to 5 mu m thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
In order to investigate the possible effects of the ecological environment on photosynthetic activity and the major light harvesting complex, the oxygen evolution rates and composition of phycobilisome from marine red alga Porphyra yezoensis Ueda and freshwater red alga Compsopogon coeruleus (Balbis) Montagne, which could grow and reproduce under salinity up to 35 ppt, were studied. The results showed that the oxygen evolution rate of P. yezoensis in seawater was significantly higher than that of C. coeruleus in freshwater, and P. yezoensis tolerated inorganic ions at a relatively higher concentration than C. coeruleus. Moreover, the phycoerythrin (PE) of P yezoensis was R-phycoerythrin containing alpha, beta, and gamma subunits comprised phycoerythrobilin and phycourobilin. In contrast, the PE from C. coeruleus consisted of alpha, beta, and gamma subunits comprised only phycoerythrobilin but not phycourobilin, suggesting that the PE from C. coeruleus was of a new type.