137 resultados para Pollen Tube
Resumo:
A simple and sensitive method for evaluating the chemical compositions of protein amino acids, including cystine (Cys)(2) and tryptophane (Try) has been developed, based on the use of a sensitive labeling reagent 2-(11H-benzo[alpha]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) along with fluorescence detection. The chromophore of the 1,2-benzo-3,4-dihydrocarbazole-ethyl chloroformate (BCEOC-Cl) molecule was replaced with the 2-(11H-benzo[alpha]-carbazol-11-yl) ethyl functional group, yielding the sensitive fluorescence molecule BCEC-Cl. The new reagent BCEC-Cl could then be substituted for labeling reagents commonly used in amino acid derivatization. The BCEC-amino acid derivatives exhibited very high detection sensitivities, particularly in the cases of (Cys)(2) and Try, which cannot be determined using traditional labeling reagents such as 9-fluorenyl methylchloroformate (FMOC-Cl) and ortho-phthaldialdehyde (OPA). The fluorescence detection intensities for the BCEC derivatives were compared to those obtained when using FMOC-Cl and BCEOC-Cl as labeling reagents. The ratios I (BCEC)/I (BCEOC) = 1.17-3.57, I (BCEC)/I (FMOC) = 1.13-8.21, and UVBCEC/UVBCEOC = 1.67-4.90 (where I is the fluorescence intensity and UV is the ultraviolet absorbance). Derivative separation was optimized on a Hypersil BDS C-18 column. The detection limits calculated from 1.0 pmol injections, at a signal-to-noise ratio of 3, ranged from 7.2 fmol for Try to 8.4 fmol for (Cys)(2). Excellent linear responses were observed, with coefficients of > 0.9994. When coupled with high-performance liquid chromatography, the method established here allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids including (Cys)(2) and Try from bee-collected pollen (bee pollen) samples.
Resumo:
Pollen morphology of 40 species of Rheum, belonging to eight sections, was investigated under LM and SEM. Four new exine patterns were found in the species: a) microcchinate-foveolate, b) rugulate, c) verrucate-perforate, and d) verrucaterugulate ornamentation. In addition, two patterns, the Rheum-type pollens with microechinate-perforate and fine-reticulate, as previously described, were also confirmed in the present study. Based on above study the evolution trends of pollen morphology in the taxa involved were discussed phylogenetically as below. As microechinate-perforate exine pattern existed commonly, the pattern is, therefore, regarded as the most primitive among all the six types. The fine-reticulate type was thought as a derivative type, deriving from the basic micro echinate-foveolate-perforate pattern, and followed by the rugulate and verrucate-perforate ornamentation. The verrucate-rugulate ornamentation should be the most advanced. More than one pollen type often exist in most of the sections in Rheum. The pollen morphology of Rheum was strongly correlated with its geographical and ecological distribution. Three medicinally important species R. officinale, R. palmation and R. tanguticum can be palynologically distinguished by their ornamentations.