365 resultados para Photo-catalytic
Resumo:
Ion - molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser- ablation supersonic expansion nozzle source. Photo- induced reactions in the 1: 1 complexes have been studied in the spectral range of 230 - 410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 3(2)P <-- 3(2)S atomic transition. The ground state geometry of Mg+ - OCNC2H5 was fully optimized at B3LYP/6- 31 - G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3P(x,y,z) excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo- induced reactions of Mg+ (OCNC2H5). (C) 2003 American Institute of Physics.
Resumo:
The selective catalytic reduction of NO by CH4 was compared over In-Fe2O3/HZSM-5 catalysts prepared by impregnation and co-impregnation methods. It was found that the catalyst preparation method greatly affected the catalyst activity. The impregnated catalyst was very active, but the co-impregnated one showed poor activity. The In Fe2O3/HZSM-5 catalysts were investigated by Mossbauer spectroscopy. The results showed that indium cations entered into the iron oxide lattice in the co-impregnated catalyst, while the impregnated catalyst exhibited a more stable structure, when both of the catalysts were treated severely in the reaction atmosphere. Characterization by means of combined in situ temperature programmed reduction (TPR)- Mossbauer spectroscopy further revealed that the performances of the two catalysts were different in the TPR processes.
Resumo:
The selective catalytic reduction (SCR) of NOx by methane in the presence of excess oxygen was studied on a Zn-Co/HZSM-5 catalyst. It was found that the addition of Zn could improve effectively the selectivity of methane towards NOx reduction. When prepared by a coimpregnation method, the Zn-Co/HZSM-5 catalyst showed much higher catalytic activity than the two catalysts of a Zn/Co/HZSM-5 and Co/Zn/HZSM-5 prepared by the successive impregnation method. It is considered that there exists a cooperative effect among the Zn, Co and zeolite, which enhances the reduction of NO to NO2 reaction and the activation of methane. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of iron promoter on the catalytic properties of Rh-Mn-Li/SiO2 catalyst in the synthesis Of C-2 oxygenates from syngas was investigated by means of the following techniques: CO hydrogenation reaction, temperature-programmed reduction (TPR), temperature-programmed desorption and reaction of adsorbed CO (CO-TPD and TPSR) and pulse adsorption of CO. The results showed that the addition of iron promoter could improve the activity of the catalysts. Unexpectedly, the yield of C-2 oxygenates increased greatly from 331.6 up to 457.5 g/(kg h) when 0.05% Fe was added into Rh-Mn-Li/SiO2 catalyst, while no change in the selectivity to C-2 oxygenates was observed. However, the activity and selectivity Of C-2 oxygenates were greatly decreased if the Fe amount exceeded 1.0%. The existence of a little iron decreased the reducibility of Rh precursor, while the reduction of Fe component itself became easier. CO uptake decreased with increasing the quantity of Fe addition. This phenomenon was further confirmed by CO-TPD results. The CO-TPD and TPSR results showed that only the strongly adsorbed CO could be hydrogenated, while the weakly adsorbed CO was desorbed. We propose that Fe is highly dispersed and in close contact with Rh and Mn; such arrangements were responsible for the high yield Of C-2 oxygenates. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In the presence of K2CO3, TiO2 shows good catalytic activity and stability for the alcohols synthesis from CO and H2O. CO conversion of 7.6% and the STY of MeOH (about 24 mg g(-1) h(-1)) and EtOH (about 8 mg g(-1) h(-1)) are obtained under reaction conditions of T = 573 K, P = 0.5 MPa, CO flow rate of 30 ml min(-1) and CO/H2O = 3/2 during the period of 12 h to 44 h time-on-stream.
Resumo:
Various pretreatments of poly (N-vinyl-2-pyrrolidone) (PVP) protected palladium-cobalt system result in different catalytic activities in the hydrodechlorination of chlorobenzene.
Resumo:
The mono- and bimetallic catalytic polymeric hollow-fiber reactors were established with catalytic polymeric cellulose acetate (CA) hollow fibers prepared by supporting the polymer-anchored mono- or bimetallic catalyst in/on the inner wall of the hollow fibers. The selective hydrogenation of cyclopentadiene to cyclopentene was efficiently carried out in the above catalytic polymeric hollow-fiber reactors, especially in the NaBH4 reduced bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor under mild conditions of 40 degrees C and 0.1 MPa. It was found that there was a remarkable synergic effect of palladium and cobalt reduced by NaBH4 in the bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor, which results in a 97.5% conversion of cyclopentadiene and a 98.4% selectivity for cyclopentene. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The catalytic decomposition of hydrazine over a series of MoNx/gamma-Al2O3 catalysts with different Mo loadings was investigated in a monopropellant thruster (10 N). When the Mo loading is equal to or higher than the monolayer coverage of MoO3 on gamma-Al2O3, the catalytic performance of the supported molybdenum nitride catalyst is close to that of the conventionally used Ir/gamma-Al2O3 catalyst. The MoNx/gamma-Al2O3 catalyst with a loading of about 23wt% Mo (1.5 monolayers) shows the highest activity for hydrazine decomposition. There is an activation process for the MoNx/gamma-Al2O3 catalysts at the early stage of hydrazine decomposition, which is probably due to the reduction of the oxide layer formed in the passivation procedure.
Resumo:
A method is presented for determining production and consumption rates of .OH radicals produced photochemically in natural surface waters. It is based on the determination of the kinetics by which the concentration of a specified trace compound decreases during irradiation. In samples from Lake Greifensee (Switzerland) low production rates for .OH limit its possible effects. In addition, fast consumptions by the natural dissolved organic solutes and by the bicarbonate protect organic micropollutants from oxidation by .OH. Neither direct nor indirect H2O2 photolysis was a significant source of .OH in the lakewater studied lacking iron, whereas nitrate photolysis could have been a source. Comparison with reaction kinetic formulations allows generalizations for other types of waters.
Resumo:
Two novel triphenylamine-substituted poly(p-phenylenevinylene) derivatives, P1 and P2, have been successfully synthesized through the Witting-Horner reaction. The structures and properties of the monomers and the resulting polymers were characterized by using H-1 NMR, FT-IR, GPC, TGA, UV-vis absorption spectroscopy, cyclic voltammetry (CV) and electroluminescence (EL) spectroscopy