216 resultados para Permeability.
Resumo:
A series of acrylonitrile (AN) copolymers with methyl acrylate (MA) or ethyl acrylate (EA) as comonomer (5-23 wt%) was prepared by free-radical copolymerisation. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 degrees C, and those to water vapor also measured at 100% relative humidity and at 30 degrees C. All the AN/acrylic copolymers are semicrystalline. As the acrylate content increase, the permeability coefficients of the copolymers to oxygen and carbon dioxide are increased progressively, but those to water vapor are decreased progressively. The gas permeability coefficients of the polymers were correlated with free-volume fractions or the ratio of free volume to cohesive energy.
Resumo:
The gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane gases in a series of poly(aryl ether ketone)s was examined. These polymer membranes have a wide range of permeability coefficients and permselectivity coefficients, showing excellent gas-transport properties. The enhanced interchain interaction in the polymers due to intermolecular hydrogen bonds and ionic bonds results in a considerable increase in permselectivity but a decrease in permeability. On the contrary, the polymers with bulky arkyl substituents show significantly increased permeability. The causes of this trend are interpreted in terms of the free volume, interchain distance, and glass transition temperature together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest is the observation that the ionomer IMPEK-K+, which simultaneously contains bulky isopropyl substituents and pendant carboxylate groups, exhibits over twice higher CO2 permeability and 15% higher CO2/CH4 permselectivity than those of bisphenol-A p'olysulfone (PSF). The possibility of using the new synthesized poly(aryl ether ketone)s in gas separation membrane application is also discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The surface of aromatic polyamide reverse osmosis composite membrane was modified by oxygen and argon plasma. The water permeability of oxygen-plasma-modified membrane increases, and the chlorine resistance of argon-plasma-modified membrane increases. The spectra of the attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopy and the contact angle of the water were analyzed to explain the improvement of the two performances of the composite membrane. The carboxyl groups were introduced when modified by oxygen plasma, and cross-linking occurred when modified by argon plasma. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A novel kind of K+ sensor with valinomycin-incorporated bilayers supported on a gold electrode consisting of self-assembled alkanethiol monolayers (SAMs) and a lipid monolayer has been fabricated successfully. The lipid monolayer is deposited on the alkylated surface of the first alkanethiol monolayer through three different methods, such as the Langmuir-Blodgett (LB) technique, painted method and painted-frozen method. The response of K + sensors produced by a painted or painted-frozen lipid monolayer on an alkanethiol alkylated gold electrode is larger than that by the LB method, which is due to the difference in fluidity of the three kinds of bilayers. Selectivity coefficients KK+, Na+, KK+, Li+, KK+, Ca2+ and KK+, Mg2+ are 10(-4), 10(-4), 2 x 10(-5) and 3 x 10(-5) respectively, and there is no obvious difference among different fabricating methods. A linear response toward the potassium ion was found in the range from 10(-1) M to 10(-5) M with the detection limit of 10(-6) M. The sensor has a slope of 60 mV per decade. Meanwhile, the longevity of the sensor was improved obviously for at least two months at about -10 degrees C. The higher stability shows the possibility to fabricate a practical biosensor.
Resumo:
Gas transport properties of home- and copolyimides prepared from 3,3',4,4'- and 2,2',3,3'-thiaphthalic dianhydride (p-TDPA and m-TDPA, respectively) with 4,4-oxydianiline (ODA) were investigated. The fractional free volume of m-TDPA-ODA is larger than that of p-TDPA-ODA, and the chain segmental mobility of the former is lower than that of the latter. The permeability coefficients of m-TDPA-ODA to H-2, CO2, and O-2 are more increased by 48, 69 and 75%, at 30 degrees C and 10 atm, respectively, than those of p-TDPA-ODA; but the permselectivities of m-TDPA-ODA for H-2, CO2, and O-2 toward N-2 are more decreased by 33, 77, and 26%, respectively, than those of p-TDPA-ODA. The permeability coefficients and the diffusion coefficients of the copolyimides can be described by the following equations: log P = Phi(p) log P-p + Phi(m), log P-m and log D-a = D-a = Phi(p) log(D-alpha)(p) + Phi(m) log(D-a)(m), respectively. The variation of the permselectivity is controlled predominantly by diffusivity selectivity. These observations are interpreted in terms of variations in the fractional free volume of polyimides. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A series of aromatic copolyimides was prepared from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and 2,2-bis(3,4-dicarboxyphenyl)hexafluoroisopropane dianhydride (6FDA) with 3,3'-dimethyl-4,4'-methylene dianiline (DMMDA) by a chemical imidization. The gas permeability coefficients of the copolyimides to H-2, CO2, O-2, N-2 and CH4 were measured under 7 atm. pressure. The fractional free volume of 6FDA-DMMDA is larger than that of HQDPA-DMMDA, while the chain segmental mobility of 6FDA-DMMDA is lower than that of HQDPA-DMMDA. The gas permeability of 6FDA-DMMDA is much higher than that of HQDPA-DMMDA but the permselectivity of 6FDA-DMMDA for H-2, CO2, O-2, N-2 over CH4 is lower than that of HQDPA-DMMDA. The experimental values of the gas permeability coefficients of the copolyimides are in satisfactory agreement with the values estimated from the gas permeability coefficients of the constituent homopolyimides and their weight fractions.
Resumo:
The gas transport properties of a series polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) with 1,3-phenylenediamine or 3,5-diaminobenzic acid (DBA) or its esters are reported. The effects of carboxylic group (-COOH) and carboxylic ether groups (-COOR), at five positions of 1,3-phenylenediamine moiety, on H-2, CO2, O-2, and N-2 permeability, diffusivity, and solubility of the polyetherimides were investigated. The gas permeability, diffusion, and solubility coefficients of the polyetherimides containing COOR are bigger than those of HQDPA-PDA, but the ideal separation factors and ideal diffusivity selectivity factors are much smaller than that of HQDPA-PDA because COOR decreases chain segmental packing efficiency and increases chain segmental mobility. The permeability coefficients of HQDPA-DBA to H-2, CO2, and O-2 are bigger than those of HQDPA-PDA; the ideal separation factors for gas pairs H-2/N-2, CO2/N-2, and O-2/N-2 are also much bigger than those of HQDPA-PDA. Both the diffusion coefficients of CO2 and O-2 and the ideal diffusivity selectivity factors for CO2/N-2 and O-2/N-2 are bigger than those of HQDPA-PDA because COOH decreases both chain segmental packing efficiency and chain segmental mobility. The copolyimides, which were prepared from 3,5-diaminobenzic acid and 3,5-diaminobenzic esters, have both high permeability and high permselectivity. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The gold electrodes coated by n-alkanethiol with various chain lengths were used to study the permeability of uric acid, ascorbic acid, 4-aminophenol, paracetanol and phenacetin by means of linear sweep voltammetry. The results show that the optimum chain length is n=10. The improvements in the selectivity and the stability of the amperometric detection of these compounds in a flow stream were obtained by n-alkanethiol self assembled monolayers modified electrodes based on their differences in the hydrophobicity and the permeability.
Resumo:
The gas permeation properties of a series of cardo polyaryletherketone materials are reported, In this series, the hydrogen atoms of benzene rings on the backbone are systematically replaced with different alkyl substituents. The effects of temperature and structure variation on gas permeability and selectivity are discussed in detail. The experimental results revealed that the polyetherketone obtained by the introduction of dimethyl and diisopropyl substituents to phenolphthalein unit is 3 similar to 6 times more permeable than the unmodified one for the gases studied.
Resumo:
Cyclic voltammetry was employed to study the influence of sterols on the lipophilic ion transport through the BLM. The mole fraction of the sterols (cholesterol, oxidized cholesterol). as referred to total lipid, was varied in a range of 0-0.8. Data demonstrate that a thin-layer model is suitable to this BLM system. By this model, the number of charges transported per lipophilic ion, the concentration of the ion in the membrane bulk phase and the aqueous/membrane phase partition coefficient could be calculated. These parameters proved that sterols had an obvious influence on the lipophilic ion transport. Cholesterol had a stronger influence on the ion transport than oxidized cholesterol. Its incorporation into egg lecithin membranes increased the partition coefficient beta of the ion up to more than 3-fold. Yet, oxidized cholesterol incorporated into egg lecithin membranes only increased the beta up to less than 2-fold, and the beta had no great variation at different oxidized cholesterol mole fractions. The higher beta obtained was partly due to the trace amount of solvent existing in the core of the lipid bilayers. At the different sterol mole fractions, combining the change of beta with the change of peak current, we also concluded that sterols had somewhat inhibiting effect on the ion transport at the higher sterols mole fraction (>0.4). These results are explained in terms of the possible change of dipole potential of the membrane produced by sterols and the decrease of the membrane fluidity caused by the condensation effect of sterols and the thinning effect caused by sterols. The substituting group (in the oxidized cholesterol) had some inhibiting effects on the ion transport at higher mole fractions (oxidized cholesterol mole fraction >0.4).
Resumo:
A novel idea relating to the selective barrier layer of a composite membrane is described. The effective interface of the composite membrane could act as a barrier layer which could be controlled to an ideally ultrathin thickness. A new type of polyamide composite membrane was prepared according to this idea, which possessed permeability and chemical resistance more than one magnitude greater than those of ordinary polyamide composite membranes. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The permeability coefficients of a series of copolymers of vinylidene chloride (VDC) with methyl acrylate (MA), butyl acrylate (BA) or vinyl chloride (VC) (as comonomer) to oxygen and carbon dioxide have been measured at 1.0 MPa and 30 degrees C, while those to water vapor have been measured at 30 degrees C and 100% relative humidity. All the copolymers are semicrystalline. VDC/MA copolymers have lower melting temperature compared with VDC/BA copolymers, while that melting temperature of VDC/VC copolymer is higher than that of VDC/acrylate copolymers with the same VDC content. The barrier property of the copolymers is predominantly controlled by crystallite, free volume fraction, and cohesive energy. The permeability coefficients of VDC/MA copolymers to oxygen, carbon dioxide, and water vapor were successfully correlated with the ratio of free volume to cohesive energy.
Resumo:
4-Aminophenol (4-AP), paracetamol (PRCT), norepinephrine (NE), and dopamine (DA) (all somewhat hydrophobic compounds) were HPLC electrochemically detected while the signals from uric acid (UA) and ascorbic acid (AA) (both hydrophilic compounds at the pH studied) were minimized, taking advantage of the permselectivity of the self-assembled n-alkanethiol monolayer (C-10-SAM)-modified Au electrodes based on solute polarity, The effects of various factors, such as the chain length of the n-alkanethiol modifier, modifying time, and pH value, on the permeability of C-10-SAM coatings were examined, The calibration curves, linear response ranges, detection limits, and reproducibilities of the EC detector for 4-AP, PRCT, NE, and DA were obtained, The result shows that the EC detector can be applied in the chromatographic detection of 4-AP, PRCT, NE, and DA in urine, effectively removing the influence of UA and AA in high concentrations existing in biological samples. As a result, a great improvement in the selectivity of EC detectors has been achieved by using Au electrodes coated with neutral n-alkanethiol monolayer.
Resumo:
The novel polyetheretherketone (PEK-C) prepared from phenolphthalein in our institute is an amorphous, rigid, tough material with good mechanical properties over a wide temperature range. To improve its water vapor permeability for the application of gas drying, PEK-C was sulfonated with concentrated sulfuric acid and transferred in sodium, cupric, and ferric salt forms. Sulfonation degree can be regulated by controlling the temperature and reaction time. Characterization of sulfonated PEK-C in sodium form was made by infrared spectroscopy. Some properties of the sulfonated PEK-C, such as solubility, glass transition temperature, thermal stability, mechanical properties, and transport properties to nitrogen and water vapor, are also discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
1,4-Bis(2,3-dicarboxyphenoxy)benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy)benzene dianhydride, bis(2,3-dicarboxyphenoxy) sulfide dianhydride, bis (3,4-dicarboxyphenoxy)sulfide dianhydride, and 2,3,3',4'-tetracarboxy diphenyl sulfide dianhydride were synthesized from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride. Bis(2,3-dicarboxyphenyl)sulfone and bis(3,4-dicarboxyphenyl) sulfone were obtained by the oxidation of the corresponding bis(dicarboxyphenyl)sulfide by hydrogen peroxide. The polyimides from the dianhydrides mentioned above and 4,4'-oxydianiline were prepared. The properties, such as dynamic mechanical behavior, thermooxidative stability, stress-strain behavior, chemical resistance, and permeability to some gases have been in investigated for the isomeric polyimides. (C) 1996 John Wiley & Sons, Inc.