169 resultados para PROTON-PROTON COLLISIONS
Resumo:
A series of sulfonated polymides containing benzimidazole groups were synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS) as the sulfonated diamine, and 2-(3',5-diaminophenyl)benzimidazole (a) or 6,4'-diamino-2-phenylbenzimidazole (b) as the nonsulfortated diamine. The electrolyte properties of the synthesized polyimides Ia-x, Ib-x, x refers to molar percentage of the sulfonated diamine) were investigated and compared with those of polyimides (Ic-x) from BTDA, ODADS, and m-phenylenediamine (c). All synthesized polyimides possessed high molecular weights revealed by their high viscosity, and formation of tough and flexible membranes. Polyintides with benzimidazole groups exhibited much better swelling capacity than those without benzimiclazole groups. This was attributed to the strong interchain interaction through basic benzimidazole functions and sulfonic acid groups. The sulfortated polyimides that are incorporated with 1, 1',8,8'-binaphthalimide exhibited better hydrolytic stability than that with 1,4,5,8-naphthalimide. Polyimide membranes with good water stability as well as high proton conductivity were developed. Polyimide membrane (Ia - 90), for example, did not lose mechanical properties after being soaked in boiling water for tOOO h, while its proton conductivity was still at a high level (compared to that of Nafion 117).
Resumo:
Polyelectrolyte complexes (PECs) of chitosan and phosphotungstic acid have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Phosphotungstic acid can be fixed within PECs membranes through strong electrostatic interactions, which avoids the decrease of conductivity caused by the dissolving of phosphotungstic acid as previously reported. Scanning electron microscopy (SEM) shows that the PECs membranes are homogeneous and dense. Fourier transform infrared spectroscopy (FTIR) demonstrates that hydrogen bonding is formed between chitosan and phosphotungstic acid. Thermogravimetric analysis (TGA) shows that the PECs membranes have good thermal stability up to 210 degrees C. The PECs membranes exhibit good swelling properties and low methanol permeability (P, 3.3 x 10(-7) cm(2) s(-1)). Proton conductivity (sigma) of the PECs membranes increases at elevated temperature, reaching the value of 0.024 S cm(-1) at 80 degrees C.
Resumo:
Surface-modified Nafion (R) membrane was prepared by casting proton-conducting polyelectrolyte complexes on the surface of Nafion (R). The casting layer is homogeneous and its thickness is about 900 nm. The proton conductivity of modified Nafion (R) is slightly lower than that of plain Nafion (R); however, its methanol permeability is 41% lower than that of plain Nafion (R). The single cells with modified Nafion (R) exhibit higher open circuit voltage (OCV = 0.73 V) and maximal power density (P-max = 58 mW cm(-2)) than the single cells with plain Nafion (R) (OCV = 0.67 V, P x = 49 mW cm-2). It is a simple, efficient, cost-effective approach to modifying Nafion (R) by casting proton-conducting materials on the surface of Nafion (R).
Resumo:
A novel sulfonated diamine monomer, 2,2'-bis(p-aminophenoxy)-1,1'-binaphthyl-6,6'-disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30-80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film-forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945-0.161 S/cm) at 20-80 degrees C in liquid water. The membranes exhibited methanol permeability from 9 x 10(-8) to 5 X 10(-7) cm(2)/s at 20 degrees C, which was much lower than that of Nafion (2 x 10(-6) cm(2)/s). The copolymers were thermally stable up to 300 degrees C. The sulfonated polyimide copolymers with 30-60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability.
Resumo:
A series of sulfonated polyimides (SPIs) were synthesized in in-cresol from 4,4'-binaphthyl- 1,11,8,8'-tetracarboxylic dianhydride (BNTDA), 4.4'-diaminodiphenylether-2,2-disulfonicacid (ODADS), and 4.4'-diamino-diphenyl ether (ODA) in the presence of triethylamine and benzoic acid. The resulted polyimides showed much better water resistance than the corresponding sulfonated polyimides from 1,4,5,8-naphthatenetetracarboxylic dianhydride (NTDA) and ODADS, which is contributed to the higher electron density in the carbonyl carbon atoms of BNTDA. Copolyimides S-75 and S-50 maintained their mechanical properties and proton conductivities after aging in water at 100 degrees C for 800 h. The proton conductivity of these SPIs was 0.0250-0.3565 S/cm at 20 degrees C and 100% relative humidity (RH), and increased to 0.11490.9470 S/cm at 80 degrees C and 100% RH. The methanol permeability values of these SPIs were in the range of 0.99-2.36 x 10(-7) cm(2)/S, which are much lower than that of Nafion 117 (2 x 10(-6) cm(2)/s).
Resumo:
A series of new composite proton exchange membranes for direct methanol fuel cells (DMFCs) based on poly (vinyl alcohol) (PVA), phosphotungstic acid (PWA) and silica were prepared. The highest proton conductivity (a) of these membranes is 0.017 S/cm at ambient temperature. The methanol permeability (D) of these composite membranes ranges from 10(-7) to 10(-8) cm(2)/S. From the ratios of sigma/D, it was found that the optimal weight composition of the PVA/PWA/SiO2 membrane is PVA/PWA/SiO2=0.40:0.40:0.20 wt. Infrared (IR) spectrographic measurements indicate that the Keggin structure characteristics of the PW12O403- anion is present in the composite membranes. Cyclic voltammetry shows that the electrochemical stability window of the complex membrane is from -0.5 to 1.5 V vs. Ag/AgCl electrode. The results of differential scanning calorimetry (DSC) show that silica can improve the thermal stability of the complexes and the single Tg of the membrane indicates that the membrane is homogeneous. The complexes behave as X-ray amorphous.
Resumo:
Novel proton-conducting gelatinous electrolytes templated by room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium-tetrafluoroborate (BMImBF(4)) have been prepared in methylsisesquioxane backbone containing H3PO4, and the influences of the RTIL on the structure, morphology, thermal stability, and electrochemical properties of the gelatinous electrolytes have been examined. X-ray diffraction and scanning electron microscopy proved that BMImBF(4) acted as structure-directing template during the sol-gel process of methyl-trimethoxysilane. X-ray photoelectron spectra and infrared spectroscopy demonstrated that the hydrogen-bonding was formed between BMImBF(4) and H3PO4. The electrolytes had good thermal stability up to 300 degreesC and showed superior mechanical and electrochemical properties. A room-temperature conductivity of 1.2 x 10(-3) S cm(-1) was obtained for the electrolyte at the molar ratio of RTIL/Si/H3PO4 0.3/1/1, and its electrochemical window was up to 1.5 V.
Resumo:
A novel sulfonated aromatic dichloride monomer was successfully prepared by the reaction of 2, 5-dichlorobenzophenone with fuming sulfuric acid. Copolymerization of this monomer in the form of sodium salt (1) with N-(4-chloro-2-trifluoromethylphenyl)-5-chloro-1,8-naphthalimide (2) or bis(N-(4-chloro-2-trifluoromethylphenyl)1,4,5,8-naphthalimide (3) generated two series of novel poly(arylene-co-naphthalimide) s I-x and II-x where x represents the content of the sulfonated monomer. The synthesized copolymers with the -SO3H group in the side chains possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymers exhibited excellent stability toward water and oxidation due to the introduction of the hydrophobic CF3 groups. The sulfonated copolyimides that incorporated with 1,8-naphthalimide (I-x) exhibited better hydrolytic and oxidative stabilities than those with 1,4,5,8-naphthalimide. Copolymer I-50 membrane endured for more than 83 h in Fenton's reagent at room temperature. The mechanical properties of I-50 membrane kept almost unchanged after immersing membrane in boiling water for 196 h. The proton conductivities of copolymer films increased with increasing IEC and temperature, reaching values above 6.8 x 10(-1) S/cm at 80 degrees C.
Resumo:
Sulfonated poly(p-phenylene)s (SPPs) containing sulfonic acid groups in their side chains had been directly synthesized by Ni(0) catalytic coupling of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and 2,5-dichlorobenzophenone. The synthesized copolymers possessed high molecular weights revealed by their high viscosity, and the formation of tough and flexible membranes by casting from DMAc solution. The copolymers exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. Transmission electron microscopic (TEM) analysis revealed that these side-chain type SPP membranes have a microphase-separated structure composed of hydrophilic side-chain domains and hydrophobic polyphenylene main chain domains. The proton conductivities of copolymer membranes increased with the increase of IEC and temperature, reaching values above 3.4 x 10(-1) S/cm at 120 degrees C, which are almost 2-3 times higher than that of Nafion 117 at the same measurement conditions. Consequently, these materials proved to be promising as proton exchange membranes.
Resumo:
A blue organic light-emitting device based on an emissive layer of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD), which exhibits excited state intramolecular proton transfer (ESIPT), was presented. The device had a luminance efficiency of 0.8 cd/A and a maximum brightness of 870 cd/m(2). Our studies indicate that some EL may originate from the triplet excitation state of the enol form of HOXD.
Resumo:
High resolution H-1 nuclear magnetic resonance ( NMR) spectroscopy has been employed to assess long-term toxicological effects of ChangLe (a kind of rare earth complex applied in agriculture). Male Wistar rats were administrated orally with ChangLe at doses of 0, 0.1, 0.2, 2.0, 10 and 20 mg/kg body weight daily, respectively, for 6 months. Urine was collected at-day 30, 60, go and serum samples were taken after 6 months. Many low-molecular weight metabolites were identified by H-1 NMR spectra of rat urine. A decrease in citrate and an increase in ketone bodies, creatinine, DMA, DMG, TMAO, and taurine in the urine of the rats. receiving high doses were found by H-1 NMR spectra. These may mean that high-dosage of ChangLe impairs the specific region of liver and kidney, such as renal tubule and mitochondria. The decrease in citrate and the increase in succinate and alpha-ketoglutarate were attributed to a combination of the inhibition of certain citric acid enzymes, renal tubular acidosis and the abnormal fatty acid catabolism. The information of the renal capillary necrosis could be derived from the increase in DMIA, DMG and TMAO. The increase in taurine was due to hepatic mitochondria dysfunction. The conclusions were supported by the results of biochemical measure. merits and enzymatic assay.
Resumo:
We report a blue organic light-emitting device having an emissive layer of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD), that exhibits excited state intramolecular proton transfer (ESIPT). The device had a luminance efficiency of 0.8 cd/A and a maximum brightness of 870 cd/m(2). Electroluminescence spectra revealed a dominating peak at 450 nm and two additional peaks at 480 and 515 nm with a full width at half maximum of 50 nm. Our studies indicate that some EL may originate from the triplet excitation state of the enol form of HOXD.
Resumo:
The high-field nuclear magnetic resonance (NMR) spectra can be used for the rapid multicomponent analysis in small amounts of biological fluids. In this paper, the effect of La (NO3)(3) on the rats' metabolism in urine was investigated by H-1 NMR analysis. The experimental groups of wistar rats were injected intraperitoneally with La(NO3)(3) at doses of 0.2, 2.0, 10 and 20mg/kg body weight. The remarkable variation of low molecular weight metabolites in urine has been identified by H-1 NMR spectra, in which dimethylamine, N, N-dimethylglycine, urea, alpha -ketoglutarate, trimethylamine N-oxide, succinate, citrate and amino acids have been suggested as NMR markers for renal damage and ethanol, lactate, taurine as the markers for liver damage. This work may assess its possible use in the early detection of biochemical changes associated with Rare Earth induced kidney and liver dysfunction.
Resumo:
Facilitated proton transfer across the water/1,2-dichloroethane (DCE) interface supported on the tips of micro- and nano-pipets by o-phenanthroline (Phen) was studied by using cyclic voltammetry. The formed micro- and nano-liquid/liquid interfaces functioned as micro- and nano-electrodes under certain experimental conditions. The dependence of the half-wave potentials on the aqueous solutions acidities was studied and the ratio of association constants between Phen and proton in the aqueous and DCE phases was calculated by the method proposed by Matsuda et al.. The standard rate constant (k(0)) and the transfer coefficient (alpha) evaluated by using nano-pipets were equal to 0.183 +/- 0.054 cm/s and 0.70 +/- 0.09, respectively.