433 resultados para NI(ACAC)(2)-METHYLALUMINOXANE CATALYST
Resumo:
We present a novel method for preparing an ultra-uniform Raney-Ni catalyst, which includes melt-quenching, hydrogen treatment and leaching in an alkali solution. The resultant catalyst shows superior activity in the reaction of cyclohexanone hydrogenation. X-ray diffraction (XRD) and XPS have been employed to characterize the catalysts. As demonstrated, the pretreatment with hydrogen caused a distinct phase transfer of the Ni-Al alloys, forming more of the Ni2Al3 component. In the subsequent leaching process, the Ni2Al3 component shows high activity and the resultant catalyst exhibits high surface areas and small pores. Moreover, metallic Al in the hydrogen-pretreated alloy appeared to be leached more easily and thus the aluminium species remaining on the catalyst surface is aluminium oxide predominantly, which serves as a matrix to stabilize active Ni species on the surface. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
A series of nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts that possess high activities for NH3 decomposition have been successfully synthesized by a coprecipitation method. The catalytic performance was investigated under the atmospheric conditions and a significant enhancement in the activity after the introduction of La was observed. Aiming to study the influence of La promoter on the physicochemical properties, we characterized the catalysts by N-2 adsorption/desorption, XRD, H-2-TPR, chemisorption and TEM techniques. Physisorption results suggested a high specific surface area and XRD spectra showed that nickel particles are in a highly dispersed state. A combination of XRD, TEM and chemisorption showed that Ni-0 particles with the average size lower, than 5.0 nm are always obtained even though the Ni loading ranged widely from 4 to 63 %. Compared with the Ni/Al2O3 catalysts, the Ni/La-Al2O3 ones with an appropriate amount of promoter enjoy a more open mesoporous structure and higher dispersion of Ni. Reduction kinetic studies of prepared catalysts were investigated by temperature-programmed reduction (TPR) method and the fact that La additive partially destroyed the metastable Ni-Al mixed oxide phase was detailed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A highly active and selective K-Pd/MnOx-ZrO2-ZnO catalyst for the one-step synthesis of 2-pentanone from ethanol is described. The possible reaction pathways for ethanol reaction over K-Pd/MnOx-ZrO2-ZnO catalyst were investigated by means of TPSR, CO2- and NH3-TPD techniques. The reactions were performed in a fixed bed continuous flow reactor. Complete conversion with high selectivity for 2-pentanone, was observed under 370 similar to 390degreesC, 2 similar to 4 MPa, GHSV = 8000 similar to 10,000 h(-1) and LHSV < 1.25 h(-1) conditions. Ethanol reactions over K-Pd/MnOx-ZrO2-ZnO catalyst showed that the catalyst could catalyze dehydrogenation. aldol. dehydration and hydrogenation reactions. Both acidic and basic properties are found on the surface of K-Pd/MnOx-ZrO2-ZnO catalyst, whose multifunctionality with the combination of basic, acid and metal sites may be responsible for the efficiency of the K-PdMnOx-ZrO2-ZnO catalyst. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A Ni-B coating was prepared with EN using potassium borohydride reducing agent. The as-plated micro-structure of the coating was confirmed from XRD to be a mixture of amorphous and supersaturated solid solution. Three kinds of phase transformation were observed from the DSC curve. Different from the previous works, the formation of Ni4B3 and Ni2B was found during some transformation processes. The key factors which influence the variation of micro-hardness and micro-structure in deposits are the formation, the size and amount of Ni3B, Ni4B3 and Ni2B. Aging of the deposits treated under some heat treatment conditions occurred at room temperature. Changes of the micro-hardness indicated aging phenomena evidently. the natural aging phenomena are concerned with various kinds of decomposition of borides, especially with Ni4B3 phase. The extent of natural aging depends on the formation and the quantity of Ni(4)B3 and Ni2B.
Resumo:
The laser-solidified microstructural and compositional characterization and phase evolution during tempering at 963 K were investigated using an analytical transmission electron microscope with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The processing parameters were 16 mm/s beam scanning speed, 3 mm beam diameter. 2 kW laser power, and 0.3 g/s feed rate. The coating was metallurgically bonded to the substrate, with a maximum thickness of 730 mu m, a microhardness of about 860 Hv and a volumetric dilution ratio of about 6%. Microanalyses revealed that the cladded coating possessed the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisted of gamma-austenite and M7C3 carbide. The gamma-austenite was a non-equilibrium phase with extended solid solution of alloying elements and a great deal of defect structures, i.e. a high density of dislocations, twins, and stacking faults existed in gamma phase. During high temperature aging, in situ carbide transformation occurred of M7C3 to M23C6 and M6C. The precipitation of M23C6, MC and M2C carbides from austenite was also observed.
Resumo:
The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.
Resumo:
A long-standing controversy exists between molecular dynamics simulations and experiments on the twinning propensity of nanocrystalline (NC) face-centered-cubic metals. For example, three-dimensional molecular dynamics simulations rarely observed twins in NC Ni, whereas experiments readily observed them. Here this discrepancy is resolved by experimental observation of an inverse grain-size effect on twinning. Specifically, decreasing the grain size first promotes twinning in NC Ni and then hinders twinning due to the inverse grain-size effect. Interestingly, no inverse grain-size effect exists on stacking fault formation. These observations are explained by generalized planar fault energies and grain-size effect on partial emissions.
Resumo:
On the basis of a brief review of the continuum theory for macroscopic descriptions and the kinetic theory for microscopic descriptions in solid/liquid two-phase flows, some suggestions are presented, i.e. the solid phase may be described by the Boltzmann equation and the liquid phase still be described by conservation laws in the continuum theory. Among them the action force on the particles by the liquid fluid is a coupling factor which connects the phases. For dilute steady solid/liquid two-phase flows, the particle velocity distribution function can be derived by analogy with the procedures in the kinetic theory of gas molecules for the equilibrium state instead of being assumed, as previous investigators did. This done, more detailed information, such as the velocity probability density distribution, mean velocity distribution and fluctuating intensity etc. can be obtained directly from the particle velocity distribution function or from its integration. Experiments have been performed for dilute solid/liquid two-phase flow in a 4 x 6 cm2 sized circulating square pipe system by means of laser Doppler anemometry so that the theories can be examined. The comparisons show that the theories agree very well with all the measured data.
Resumo:
系统研究了纳米晶Ni与粗晶Ni的疲劳行为。通过疲劳实验获得了这2种材料的疲劳应力--寿命曲线,并采用AFM对纳米晶Ni样品表面进行观察以研究其裂纹萌生的微观机制,利用纳米压痕仪对疲劳实验前后样品的力学性能和显微组织变化进行了研究。结果表明,纳米晶Ni具有比粗晶Ni更高的疲劳极限。AFM观察表明纳米晶疲劳后样品表面出现平均尺寸为73 nm的胞状起伏,疲劳后样品的晶粒尺寸没有发生明显改变。压痕硬度结果表明疲劳过程材料的力学性能也未发生明显变化。
Resumo:
A process of laser cladding Ni-CF-C-CaF2 mixed powders to form a multifunctional composite coatingd on gamma-TiAl substrate was carried out. The microstructure of the coating was examined using XRD, SEM and EDS. The coating has a unique microstructure consisting of primary dendrite or short-stick TiC and block Al4C3 carbides reinforcement as well as fine isolated spherical CaF2 solid lubrication particles uniformly dispersed in the NiCrAlTi (gamma) matrix. The average microhardness of the composite coatings is approximately HV 650 and it is 2-factor greater than that of the TiAl substrate. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
本文结合测试分析光学一机械桁架悬臂结构的振动特性,为用MATLAB控制NI采集卡实现高精度数据采集与分析功能提供了实例参考,也为MATLAB控制其它高性能采集卡提供了有益的操作思路。
Resumo:
Polycrystalline Zn1-xNixO diluted magnetic semiconductors have been successfully synthesized by an auto-combustion method. X-ray diffraction measurements indicated that the 5 at% Ni-cloped ZnO had the pure wurtzite structure. Refinements of cell parameters from powder diffraction data revealed that the cell parameters of Zn0.95Ni0.05O were a little bit larger than ZnO. Transmission electron microscopy observation showed that the as-synthesized powders were of the size similar to 60 nm. Magnetic investigations showed that the nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetisin with the saturation magnetic moment of 0.1 emu/g (0.29 mu(B)/Ni2+). (c) 2005 Elsevier B.V. All rights reserved.