384 resultados para Methanol.
The ion-molecule reaction after multiphoton ionization in the binary cluster of ammonia and methanol
Resumo:
The binary cluster (CH3OH)(n)(NH3)(m) was studied by using a multiphoton ionization time-of-flight mass spectrometer (MPI-TOFMS). The measured two series of protonated cluster ions: (CH3OH)(n)H+ and (CH3OH)(n)NH4+ (1 less than or equal to n less than or equal to 14) were attributed to the ion-molecule reaction in the binary cluster ions. The mixed cluster of CH3OD with ammonia was also studied. The results implied that the proton transfer probability from the OD group was larger than that from CH3 group. The ab initio calculation of the binary cluster was carried out at the HF/STO-3G and MP2/6-31G** levels of theory, and indicated that the latter process of the proton transfer must overcome a barrier of similar to 29 kcal/mol. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
With addition of methanol in acetic acid solvent, m-phenoxytoluene could be oxidized to m-phenoxybenzaldehyde selectively by a cobalt bromide catalyst. Paratemters such as the ratio of Co/Br and the reaction time of m-phenoxytoluene oxidation as well as visible spectra of cobalt bromide in acetic acid/methanol solvents, were also investigated. Addition of methanol caused the oxidation of aldehydes to proceed more slowly than it did solely in acetic acid solvent. The decrease of cobaltous-multibromides in acetic acid/methanol solvents was responsible for the improvement in the selective oxidation of m-phenoxytoluene. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Coke formation on/in ZSM-5, USY and SAPO-34 zeolites was investigated during the methanol conversion to olefins at temperatures from 298 to 773 K using ultraviolet (UV) Raman spectroscopy. The fluorescence interference that usually obscures the Raman spectra of zeolites in the conventional Raman spectroscopy, particularly for coked catalysts, can be successfully avoided in the UV Raman spectroscopy. Raman spectra are almost the same for adsorbed methanol on the three zeolites at room temperature. However, the Raman spectra of the surface species formed at elevated temperatures are quite different for the three zeolites. Coke species formed in/on SAPO-34 are mainly polyolefinic species, and in/on ZSM-5 are some aromatic species, but polyaromatic or substituted aromatic species are predominant in USY at high temperatures. Most of the coke species can be removed after a treatment with O-2 at 773 K, while some small amount of coke species always remains in these zeolites, particularly for USY. The main reason for the different behavior of coke formation in the three zeolites could be attributed to the different pore structures of the zeolites. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The characteristics of a compact plate-fin reformer (PFR) which integrates endothermic and exothermic reactions into one unit have been investigated by experiment as well as by numerical simulation. One reforming chamber was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. In the PFR, which is based on a plate-fin beat exchanger, catalytic combustion of the reforming gas is used to simulate the fuel cell anode off gas (AOG) which supplies the necessary heat for the methanol steam reforming. Temperature distributions in all chambers and composition distribution in reforming chamber have been studied, and the effect of the ratio of H2O/CH3OH on the performance of the PFR has also been investigated. A model of the PFR was derived using a three-dimensional numerical model for a cross-current flow arrangement. Theoretical predictions of the temperature distributions in the PFR were in good agreement with experimental values. In addition, the numerical model was able to accurately predict the methanol conversion and the reformate composition in reforming chamber. © 2005 Elsevier B.V. All rights reserved.
Resumo:
A compact plate-fin reformer (PFR) consisting of closely spaced plate-fins, in which endothermic and exothermic reactions take place in alternate chambers, has been studied. In the PFR, which was based on a plate-fin heat exchanger, catalytic combustion of the reforming gas, as a simulation of the fuel cell anode off gas (AOG), supplied the necessary heat for the reforming reaction. One reforming chamber, which was for hydrogen production, was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. The PFR is very compact, easy to be placed and scaled up. The effect of the ratio of H2O/CH3OH on the performance of the PFR has been investigated, and temperature distributions in different chambers were studied. Besides, the stationary behavior of the PFR was also investigated. Heat transfer of the reformer was enhanced by internal plate-fins as well as by external catalytic combustion, which offer both high methanol conversion ratio and low CO concentration. In addition, the fully integrated reformer exhibited good test stability. Based on the PFR, a scale-up reformer was designed and operated continuously for 1000 h, with high methanol conversion ratio and low CO concentration. (c) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO3)(3) and [Pt(H2NCH2CH2NH2)(2)]Cl-2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (220) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation. (c) 2004 Elsevier Ltd. All rights reserved.
Improvement of direct methanol fuel cell performance by modifying catalyst coated membrane structure
Resumo:
A five-layer catalyst coated membrane (CCM) based upon Nation 115 membrane for direct methanol fuel cell (DMFC) was designed and fabricated by introducing a modified Nafion layer between the membrane and the catalyst layer. The properties of the CCM were determined by SEM, cyclic voltammetry, impedance spectroscopy, ruinous test and I-V curves. The characterizations show that the modified Nation layers provide increased interface contact area and enhanced interaction between the membrane and the catalyst layer. As a result, higher Pt utilization, lower contact resistance and superior durability of membrane electrode assembly was achieved. A 75% Pt utilization efficiency was obtained by using the novel CCM structure, whereas the conventional structure gave 60% efficiency. All these features greatly contribute to the increase in DMFC performance. The DMFC with new CCM structure presented a maximum power density of 260 MW cm(-2), but the DMFC with conventional structure gave only 200 mW cm(-2) under the same operation condition. (c) 2005 Elsevier B.V. All rights reserved.