438 resultados para MISCIBLE BLENDS
Resumo:
The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high-impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleicanhydride-(MA)-grafted HIPS (HIPS-g-MA) were used. It was found that the domain size of HIPS-g-MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010-HIPS-g-MA blends were enhanced much more than that of PA1010-HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS-g-MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (less than or equal to 35 wt %), the T-c of PA1010 shifted towards lower temperature, from 178 to 83 degrees C. An additional transition was detected at a temperature located between the T-g's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010-HIPS-g-MA 80/20. (C) 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857-865, 1999.
Resumo:
The effect of the content of a copolymer consisting of high impact polystyrene grafted with maleic anhydride (HIPS-g-MA) on morphological and mechanical properties of PA1010/HIPS blends has been studied. Blend morphologies were controlled by adding HIPS-g-MA during melt processing, thus the dispersion of the HIPS phase and interfacial adhesion between the domains and matrices in these blends were changed obviously. The weight fractions of HIPS-g-MA in the blends increased from 2.5 to 20, then much finer dispersions of discrete HIPS phase with average domain sizes decreased from 6.1 to 0.1 mu m were obtained. It was found that a compatibilizer, a graft copolymer of HIPS-g-MA and PA1010 was synthesized in situ during the melt mixing of the blends. The mechanical properties of compatibilized blends were obviously better than those of uncompatibilized PA1010/HIPS blends. These behaviors could be attributed to the chemical interactions between the two components of PA1010 and HIPS-g-MA and good dispersion in PA1010/HIPS/HIPS-g-MA blends. Evidence of reactions in the blends was seen in the morphology and mechanical behaviour of the solid. The blend containing 5 wt % HIPS-g-MA component exhibited outstanding toughness. (C) 1999 Kluwer Academic Publishers.
Resumo:
The effect of adding diblock copolymer poly(styrene-b-4-vinylpyridine) (P(S-b-4VPy), to immiscible blends of syndiotactic polystyrene (sPS)/thermoplastic polyurethane (TPU) on the morphology, thermal transition, crystalline structure, and rheological and mechanical properties of the blends has been investigated. The diblock copolymer was synthesized by sequential anionic copolymerization and was melt-blended with sPS and TPU. Scanning electron microscopy (SEM) showed that the added block copolymer reduced the domain size of the dispersed phase in the blends. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) revealed that the extent of compatibility between sPS and TPU affected the crystallization of the sPS in the blends. Tensile strength and elongation at break increased, while the dynamic modulus and complex viscosity decreased with the amount of P(S-b-4VPy) in the blend. The compatibilizing effect of the diblock copolymer is the result of its location at the interface between the sPS and the TPU phases and penetration of the blocks into the: corresponding phases, i.e. the polystyrene block enters the noncrystalline regions of the sPS, and the poly(4-vinylpyridine) block interacts with TPU through intermolecular hydrogen bonding. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Noncompatibilized and compatibilized ABS-nylon1010 blends were prepared by melt mixing. Polystyrene and glycidyl methacrylate (SG) copolymer was used as a compatibilizer to enhance the interfacial adhesion and to control the morphology. This SG copolymer contains reactive glycidyl groups that are able to react with PA1010 end groups (-NH2 or -COOH) under melt conditions to form SG-g-Nylon copolymer. Effects of the compatibilizer SG on the rheological, thermal, and morphological properties were investigated by capillary rheometer, DSC, and SEM techniques. The compatibilized ABS-PA1010 blend has higher viscosity, lower crystallinity, and smaller phase domain compared to the corresponding noncompatibilized blend. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Nonisothermal crystallization and melting behavior of poly(P-hydroxybutyrate) (PHB)-poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB-PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB-PVAc blends very well. The double-melting phenomenon is found to be caused by crystallization during heating in DSC. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Blend films of poly(epsilon-caprolactone) (PCL) and poly(DL-lactide) (PDLLA) with 0.5 weight fraction of PCL were prepared by means of solution casting and their degradation behavior was studied in phosphate buffer solution containing Pseudomonas (PS) lipase. Enzymatic degradation of the blend films occurred continuously within the first 6 days and finally stopped when the film weight loss reached 50%, showing that only PCL in the blends degraded under the action of PS lipase in the buffer solution. These results indicate the selectivity of PS lipase on the promotion of degradation for PCL and PDLLA. The thermal properties and morphology of the blend films were investigated by differential scanning calorimetry, wide-angle X-ray diffraction and scanning electron microscopy (SEM). The morphology resulting from aggregate structures of PCL in the blends was destroyed in the enzymatic degradation process, as observed by SEM. These results confirm again the enzymatic degradation of PCL in the blends in the presence of PS lipase. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The compatibilizing effect and mechanism of poly(styrene-b-4-vinylpyridine) diblock copolymer, P(S-b-4VPy), on the immiscible blend of polystyrene (PS)/zinc salt of sulphonated polystyrene (Zn-SPS) were studied. SEM results show that the domains of the dispersed phase in the blend become finer. DSC experiments reveal that the difference between the two T-g's corresponding to the phases in the blends becomes larger on addition of P(S-b-4VPy), mainly resulting from dissolving of the poly(4-vinylpyridine (P4VPy) block in the Zn-SPS phase. FTIR analysis shows that compatibility of P4VPy and Zn-SPS arises from the stoichiometric coordination of the zinc ions of Zn-SPS and pyridine nitrogens of P4VPy. SAXS analysis indicates the effect of the P(S-b-4VPy) content on the structure of the compatibilized blends. When the content of the block copolymer is lower than 4.1 wt%, the number of ion pairs in an aggregate in the Zn-SPS becomes smaller, and aggregates in ionomer in the blend become less organized with increasing P(S-b-4VPy). When the P(S-b-4VPy) content in the blend is up to 7.4 wt%, a fraction of P(S-b-4VPy) form a separate domain in the blend. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Blends of linear low-density polyethylene (LLDPE) and poly(ethylene-co-methacrylic acid) (EMA) random copolymer were studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and excimer fluorescence. In binary blends, crystallization of EMA was studied, and no modification of crystal structure was detected. In excimer fluorescence measurements, emission intensities of blends of EMA and naphthalene-labeled LLDPE were measured. The ratio of the excimer emission intensity (I-D) to the emission intensity of the isolated "monomer" (I-M) decreases upon addition of EMA, indicating that PE segments of EMA interpenetrate into the amorphous phase of LLDPE. (C) 1998 Published by Elsevier Science Ltd,. All rights reserved.
Resumo:
The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) blends were studied by using differential scanning calorimetry(DSC). The Avrami analysis indicates that the addition of PVAc into PHB results in the decrease in the overall crystallization rate of the PHB phase, but does not affect PHB's nucleation mechanism and geometry of crystal growth. The activation energy of the overall process of crystallization increases with the increasing PVAc content in the blends. The phenomenon of multiple melting endotherms is observed, which is caused by melting and recrystallization during the DSC heating run. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Compatibilization of blends of Linear low-density polyethylene (LLDPE)-poly(methyl methacrylate) (PMMA) and LLDPE-copolymer of methyl methacrylate (MMA) and 4-vinylpyridine (poly(MMA-co-4VP) with poly(ethylene-co-methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE-PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4-vinyl pyridine units are introduced into PMMA chains, or poly(MMA-co-4VP) is used as the polar polymer. In LLDPE-poly(MMA-co-4VP)-EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA-co-4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N-1s binding energy in X-ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore-labeled LLDPE chains and chromophore-labeled poly(MMA-co-4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA-co-4VP). (C) 1999 John Wiley & Sons, Inc.
Resumo:
The compatibilization effect of poly(styrene-b-2-ethyl-2-oxazoline) diblock copolymer, P(S-b-EOx), on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(ethylene-co-acrylic acid) (EAA) is examined in terms of phase structure and thermal, rheological and mechanical properties, and its compatibilizing mechanism is investigated by Fourier-transform infrared spectroscopy. The block copolymer, synthesized by a mechanism transformation copolymerization, is used in solution blending of PPO/EAA. Scanning electron micrographs show that the blends exhibit a more regular and finer dispersion on addition of a small amount of P(S-b-EOx). Thermal analysis indicates that the grass transition of PPO and the lower endothermic peal; of EAA components become closer on adding P(S-b-EOx), and the added diblock copolymer is mainly located at the interface between the PPO and EAA phases. The interfacial tension estimated by theological measurement is significantly reduced on addition of a small amount of P(S-b-EOx). The tensile strength and elongation at break increase with the addition of the diblock copolymer for PPO-rich blends, whereas the tensile strength increases but the elongation at break decreases for EAA-rich blends. This effect is interpreted in terms of interfacial activity and the reinforcing effect of the diblock copolymer, and it is concluded that the diblock copolymer plays a role as an effective compatibilizer for PPO/EAA blends. The specific interaction between EAA and polar parts of P(S-b-EOx) is mainly hydrogen bonding. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Binary blends of polyamide 1010/poly(propylene) and polyamide 1010 (PA1010)/poly(propylene)-graft-(glycidyl methacrylate) (PP-g-GMA) were prepared. The epoxy groups in PP-g-GMA react with the amino end-groups in PA1010, thus a PA1010-graft-PP copolymer is formed and acts as a compatibilizer between PA1010 and PP-g-GMA. The reaction was confirmed by electron spectroscopy for chemical analysis (ESCA) and attenuated total reflection (ATR)-FTIR spectroscopic analysis, and also evaluated by the stability of the suspension obtained by dissolving the blends in formic acid and by the morphologies of the blends.
Resumo:
Blends of linear low-density polyethylene (LLDPE) and a diblock copolymer of hydrogenated polybutadiene and methyl methacrylate [P(HB-b-MMA)] were studied by transimission electron microscope (TEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD). At 10 wt% block copolymer content, block copolymer chains exist as spherical micelles and cylindrical micelles in LLDPE matrix. At 50 wt% block copolymer content, block copolymer chains mainly form cylindrical micelles. The core and corona of micelles consist of PMMA and PHB blocks, respectively. DSC results show that the total enthalpy of crystallization of the blends varies linearly with LLDPE weight percent, indicating no interactions in the crystalline phase. In the blends, no distortion of the unit cell is observed in WAXD tests.
Resumo:
A novel engineering thermoplastic, phenolphthalein poly (ether-ether-sulfone) (PES-C) was blended with a commercial thermotropic liquid crystalline polymer(TLCP), Vectra A950, up to 30 weight percent of TLCP. A rheometrics dynamic spectrometer (RDS-I) and a CEAST capillary rheometer, a rheoscope 1000 were employed to investigate the melt rheology and extrusion behaviour at both the low and high shearing rates. The morphologies of the blends under different shearing were observed with a scanning electron microscope(SEM) and correlated to the observed rheology. The principal normal stress differences measured with cone-and-plate geometry give a temperature-independent correlation for both blend and PES-C when they are plotted against shear stress. But the extrudate swell of the blends showed a strong temperature dependence at each shear stress. The concentration dependence of extrudate swell shows a contrary behaviour to that of the inorganic filled system. A reasonable hypothesis based on the relaxation and disorientation of TLCP during flowing in the capillary and exiting was given to explain it. The melt fracture was checked after extrusion from capillary and was discussed.
Resumo:
The toughening effect of the shell content of a core-shell latex polymer poly(butyl acrylate) (PBA)-cs-poly(methyl methacrylate) (PMMA) on its blends with polycarbonate (PC) was studied. The changes of mechanical properties, morphology, and compatibility of the blends of PC/PBA-cs-PMMA with the change of the shell thickness of PBA-cs-PMMA were investigated. It is interesting to notice that mechanical properties of the blends are very sensitive to the shell thickness (i.e., shell content), and that there is a possibility to adjust the impact and tensile properties of the blend by selecting a PBA-cs-PMMA with a proper core/shell ratio. Hence, a modified PC material with balanced mechanical properties may be prepared.