139 resultados para Lithium intercalation
Resumo:
Calf thymus DNA was immobilized on functionalized glassy carbon, gold and quartz substrates, respectively, by the layer-by-layer (LBL) assembly method with a polycation QPVP-Os, a quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) as counterions. UV-visible absorption and surface plasmon resonance spectroscopy (SPR) showed that the resulting film was uniform with the average thickness 3.4 nm for one bilayer. Cyclic voltammetry (CV) showed that the total surface coverage of the polycations increases as each QPVP-Os/DNA bilayer added to the electrode surface, but the surface formal potential of Os-centered redox reaction shifts negatively, which is mainly attributed to the intercalation of redox-active complex to DNA chain. The electron transfer kinetics of electroactive QPVP-Os in the multilayer film was investigated by electrochemical impedance experiment for the first time. The permeability of Fe(CN)(6)(3-) in the solution into the multilayer film depends on the number of bilayers in the film. It is worth noting that when the multilayer film is up to 4 bilayers, the CV curves of the multilayer films display the typical characteristic of a microelectrode array.
Resumo:
Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8x10(-4) S cm(-1) is obtained at 28 degreesC. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.
Resumo:
Four isomers of steroidal saponins were differentiated using multiple-stage tandem mass spectrometry combined with electrospray ionization (ESI-MSn). With the addition of lithium salt, the [M+Li](+) ions of saponins were observed in the ESI spectra. MSn spectra of these [M+Li](+) ions provided detailed structural information and allowed differentiation of the four isomeric saponins. The cross-ring cleavage ions from the saccharide chains of the saponins could be used as diagnostic ions for information concerning the linkage of the sugar moieties of the saponins. The masses of the X, A, Y and C type fragment ions formed from [M+Li](+) ions of the isomeric saponins provided information defining the methyl group locations.
Resumo:
The kinetics of facilitated ion-transfer (FIT) reactions at high driving force across the water/1,2-dichloroethane (W/DCE) interface is investigated by scanning electrochemical microscopy (SECM). The transfers of lithium and sodium ions facilitated by dibenzo-18-crown-6 (DB18C6) across the polarized W/DCE interface are chosen as model systems because they have the largest potential range that can be controlled externally. By selecting the appropriate ratios of the reactant concentrations (Kr c(M)+/c(DB18C6)) and using nanopipets as the SECM tips, we obtained a series of rate constants (k(f)) at various driving forces (Delta(O)(W) phi(ML+)(0') - Es, Delta(O)(W) phi(ML+)(0') is the formal potential of facilitated ion transfer and Es is the potential applied externally at the substrate interface) based on a three-electrode system. The FIT rate constants k(f) are found to be dependent upon the driving force. When the driving force is low, the dependence of 1n k(f) on the driving force is linear with a transfer coefficient of about 0.3. It follows the classical Butler-Volmer theory and then reaches a maximum before it decreases again when we further increase the driving forces. This indicates that there exists an inverted region, and these behaviors have been explained by Marcus theory.