140 resultados para Hydrocarbons, Chlorinated


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/gamma-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm(2) min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/gamma-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91-93% and a H-2 selectivity of 95-97% have been achieved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A practical and efficient disposal method for hydrodechlormation of polychlorinated biphenyls (PCBs) in transformer oil is reported. Transformer oil containing PCBs was treated by nanometric sodium hydride (nano-NaH) and transition metal catalysts. High destruction and removal efficiency (89.8%) can be attained by nano-NaH alone under mild conditions. The process exhibits apparent characteristics of a first order reaction. The reductive ability of nano-NaH was enhanced by the addition of transition metal catalysts. In the presence of TiCl4, 99.9% PCBs was hydrodechlorinated. The complex reducing reagents, Ni(OAc)(2) + i-PrONa, show extra hydrodechlorinating activity for di-chlorinated biphenyls. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas phase partial oxidation of toluene over V/Ti oxide catalysts has been successfully performed in a microchannel reactor, which provides very good mass and heat transfer conditions. With the elimination of hot spots, which are known as the most negative factors for partial oxidation of hydrocarbons, steady and uniform reaction conditions can be achieved in the catalyst bed by using, the microreactor. Since the best performance of the catalysts might be exploited, the selectivity of partial oxidation products of toluene has remarkably increased compared to the traditional packed fixed-bed reactor, even without the bother of modifying the catalysts, diluting the reactants or catalysts with inert contents to avoid hot spots or improve the diffusion and mixing. Furthermore, in virtue of its inherent safety features, when using pure oxygen as oxidant, the reactions were handled safety within the explosion limits in the microreactor. With TiO2 carried V2O5 as catalysts, the total selectivity of benzaldehyde and benzoic acid reaches around 60%, and the toluene conversion is about 10%. The conversion can go up without violent decline of selectivity, unlike most fixed bed reactors. Space time yield of 3.12 kg h(-1) L-1 calculated on the basis of the channel volume has been achieved. The influence of operating conditions has been investigated in detail in the microreactor. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniformly carbon-covered alumina (CCA) was prepared via the carbonization of sucrose highly dispersed on the alumina surface. The CCA samples were characterized by XRD, XPS, DTA-TG, UV Raman, nitrogen adsorption experiments at 77 K, and rhodamine B (RB) adsorption in aqueous media. UV Raman spectra indicated that the carbon species formed were probably conjugated olefinic or polycyclic aromatic hydrocarbons, which can be considered molecular subunits of a graphitic plane. The N(2) adsorption isotherms, pore size distributions, and XPS results indicated that carbon was uniformly dispersed on the alumina surface in the as-prepared CCA. The carbon coverage and number of carbon layers in CCA could be controlled by the tuning of the sucrose content in the precursor and impregnation times. RB adsorption isotherms suggested that the monolayer adsorption capacity of RB on alumina increased drastically for the sample with uniformly dispersed carbon. The as-prepared CCA possessed the texture of alumina and the surface properties of carbon or both carbon and alumina depending on the carbon coverage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HSAPO-34 molecular sieve was employed in chloromethane conversion and showed high performance in activity and selectivity in production of light olefins. Our detailed IR investigation allowed the identification of the active sites and the adsorbed species and demonstrated that the conversion started from 350 degrees C with alkoxy group as the intermediate. The fixed-bed catalytic testing evidenced that in the range of 350-500 degrees C, 70-80% of chloromethane was transferred to ethylene, propylene and butenes. Increasing reaction temperature favors the conversion and enhances the yield of lighter olefins. A very important reversible phenomenon, the breaking of Al-O-P bonds upon adsorption of HCl, a main product of reaction to generate a large amount of P-OH groups and the recovery of Al-O-P upon removal of HCI was revealed. (c) 2005 Elsevier B.V. All rights reserved.