237 resultados para Humidité du sol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ synthesis of terbium carboxyl complexes in an organic-inorganic hybrid matrix by a sol-gel process has been proposed. The formation of terbium carboxyl complexes in the hybrid matrix is confirmed by the luminescence spectra and IR spectra. It is observed that the location at the amino group in aminobenzoic acid has a large effect on the luminescence properties and lifetimes. Furthermore, the emission intensity decreases with increasing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethyl acrylate) (PEA)/SiO2 hybrids with different compositions were prepared under different casting temperatures and pH values. Their morphology as investigated by transmission electron microscopy (TEM) shows that samples with different compositions have different morphologies. When the SiO2 content is lower, PEA is the continuous phase and SiO2 is the dispersed phase. At higher SiO2 content, the change in phase morphology takes place, nd PEA gradually dispersing in the form of latex particles in SiO2 matrix. Change in phase morphology depends mainly on the time the sol-gel transition occurs. At suitable casting temperature and pH value, PEA/SiO2 in 95/5 and 50/50 hybrids with even dispersion was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rare earth (Eu3+, Dy3+)-polyoxometalate thin films were fabricated on quartz plate by the sol-gel method. The thin films were demonstrated by the luminescence spectra. The thin films exhibit the characteristic emission bands of the rare-earth ions. It is noticed that the yellow to blue intensity ratio (Y:B) of Dy3+ and the red to orange ratio (R:O) of Eu3+ in the films are different from that of the corresponding solids. Furthermore, the thin films present shorter fluorescence lifetime than the pure complexes. The reasons that were responsible for these results were also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare-earth (Eu3+, Tb3+)-doped Ca2Y8(SiO4)(6)O-2 luminescent thin films were dip-coated on silicon and quartz glass substrates through a sol-gel route. X-ray diffraction (XRD), scanning electron microscopy (SEM) and luminescence excitation and emission spectra as well as luminescence decays were used to characterize the resultant films. The results of XRD reveal that these films remain amorphous below 700 degreesC, begin to crystallize at 800 degreesC, and crystallize completely around 1000 degreesC with an oxyapatite structure. The grain structure of the film can be seen clearly from SEM micrographs, where particles with various shape and average size of 250 nm can be resolved. The Eu3+ and Tb3+ ions show their characteristic red (D-5(0)-F-7(2)) and green (D-5(4)-F-7(5)) emission in the films with a quenching concentration of 10 and 6 mol% (of Y3+), respectively. The lifetime of Eu-3divided by increases with the heat treatment temperature front 700 to 1100 degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sol-gel derived ceramic-carbon composite electrode is used for fabrication of a new type of optical fiber biosensor based on luminol electrochemiluminescence (ECL). The electrode consists of graphite powder impregnated with glucose oxidase in a silicate network. In this configuration, the immobilized enzyme oxidizes glucose to liberate hydrogen peroxide and graphite powder provides percolation conductivity for triggering the ECL between luminol and the liberated hydrogen peroxide. Both of the reactions occur simultaneously on the surface of the composite electrode, thereby the response of the biosensor is very fast. The peak intensity was achieved within only 20 s after glucose injection. In addition, the electrode could be renewed by a simple mechanical polishing step in case of contamination or fouling. The linear range extends from 0.01 to 10 mM for glucose and the detection limit is about 8.16 muM. The renewal repeatability and stability of the biosensor are also investigated in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylene blue-intercalated a-zirconium phosphate (MBZrP) micro particles in deionized water were deposited onto the surface of graphite powder to prepare graphite powder-supported MBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite. The composite was used as electrode material to fabricate a surface-renewable, rigid, leak-free carbon ceramic composite electrode, bulk-modified with methylene blue (MB). In the configuration, alpha-zirconium phosphate was employed as a solid host for MB, which acted as a catalyst. Graphite powder ensured conductivity by percolation, the silicate provided a rigid porous backbone and the methyl groups endowed hydrophobicity and thus limited the wetting section of the modified electrode. Peak currents of the MBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled at high scan rates. Square-wave voltammetric study revealed that MBZrP immobilized in carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution with pH ranged from 0.44 to 2.94. In addition, the chemically modified electrode showed an electrocatalytic activity toward nitrite reduction at +0.15 V (vs. Ag/AgCl) in acidic aqueous solution (pH=0.44). The linear range and detection limit are 1 x 10(-6)-4 x 10(-3) mol L-1 and 1.5 x 10(-7) mol L-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM) and optical microscopy, UV/vis transmission and absorption spectra, photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degreesC and the crystallinity increased with the increase of annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of grains with an average size of 90 nm. Patterned gel and crystalline phosphor film bands with different widths (5-60 mum) were obtained. Significant shrinkage and a few defects were observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films because of an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in a YVO4 film host. Both the lifetimes and PL intensity of the rare earth ions increased with increasing annealing temperature from 400 to 800 degreesC, and the optimum concentration for Eu3+ was determined to be 7 mol % and those for Dy3+, Sm3-, and Er3+ were 2 Mol % of Y3- in YVO4 films, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.