213 resultados para Hibridização in situ
Resumo:
The redox process of norepinephrine in pH = 7.0 phosphate buffer solution at glassy carbon electrode was studied by circular dichroism spectroelectrochemistry with a long optical path thin layer cell. The spectroelectrochemical data were analyzed with the double logarithm method. According to the double logarithsmic plot results, the mechanism of electrochemical oxidation of norepinephrine is an irreversible process with a subsequent chemical reaction (EC) to form a norepinephrinechrome. Both of norepinephrinequinone and norepinephrinechrome are followed E mechanisms. Some kinetic parameters about the electrochemical process, i.e. the electron transfer coefficient and number of electron transfered, alpha n = 0.38, the formal potential, E-1(0)' = 0.20 V, the standard heterogenous electron transfer rate constant, k(1)(0) = 1.2 x 10(-4) cm s(-1) for the oxidation of norepinephrine, alpha n = 0.37, E-2(0)' = 0.25 V and k(2)(0) = 4.4 x 10(-5) cm . s(-1) for the reduction of norepinephrinequnone and alpha n = 0.33, E-3(0)' = -0.25V and k(3)(0) = 1.1 x 10(-4) cm . s(-1) for the reduction of norpinephrinechrome, were also estimated.
Resumo:
The electroxidation of ergosterol was studied by in situ circular dichroic (CD) spectroelectrochemistry with a long optical path length thin layer cell. It was confirmed that the oxidation of ergosterol in ethanol solution is a two-electron irreversible electrochemical process with strong adsorption of an electroinactive product at the glassy carbon electrode, which blocks the electrochemical reaction. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential, E-0 = 1.00 V, alpha n(alpha) = 0.302, the standard electrochemical rate constant, k(0) = 6.1(+/-0.4) x 10(-4) cm s(-1) and the adsorption constant, beta = 19 +/- 1, were obtained. The number of electrons transferred (n = 1.86) was estimated by cyclic voltammetry.
Resumo:
In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 mu m diameter Pt disk electrode. Using this technique, the catalytic ability of cobalt hexacyanoferrate(CoHCF) microcrystalline toward AA oxidation was also studied, it was found that the dispersed CoHCF powder in the PEG paste can generate well-shaped thin-layer cyclic voltammetric waves with the peak height proportional to the scan rate, corresponding to the Fe centered redox reactions. This oxidation step catalyzed the AA oxidation. Also, this pasted CoHCF powder generated well-resolved in-situ MFTIRs spectra, by which a chemical interaction between C = C bond of AA ring and CoHCF lattice was revealed. A corresponding surface docking mechanism for the catalytic reaction has been proposed.
Resumo:
Studies for the development of the in-situ microscopic FTIR spectroelectrochemistry (MFTIRS) have been carried out in polyethylene glycol(PEG) polyelectrolyte, Redox reaction mechanisms of various electroactive substances involving inorganic salt, organic compound and inorganic polymeric particles have been studied.
Resumo:
The electrode reaction process of ascorbic (Vc) was studied by in-situ circular dichroic(CD) spectroelectrochemistry with a long optical path thin layer cell on glassy carbon(GC) electrode. The spectroelectrochemical data were analyzed by the double logarithmic method together with nonlinear regression. The results suggested that the mechanism of Ve in pH 7.0 phosphate buffer solution at GC electrode was a two-electron irreversible electrooxidation followed by adsorption of the oxidation product. That is a self-accelerated process. Some kinetic parameters at free and at adsorbed electrode surface, i.e, the formal potentials, E-0' = 0.09 V, E-a(0') = 0.26 +/- 0.02 V; the electron transfer coefficient and number of transfered electron, alpha n = 0.41, alpha(a)n = 0.07;the standard heterogeneous electron transfer rate constant, k(0) = 8.0 x 10(-5) cm.s(-1), k(a)(0) = 1.9 x 10(-4) cm.s(-1) and adsorption constant, beta = 102.6 were also estimated.
Resumo:
A new nickel (II)-cyanometallates modified on glassy carbon electrode was prepared by a new method and studied by cyclic voltammetry and in situ Fourier transform infrared (FTIR) spectroelectrochemistry. It was found that the NiHCF film existed in two forms: Ni2Fe(II)-(CN)(6) and M2NiFe(II)(CN)(6), Fe(CN)(3)(6-) codeposited in the NiHCF film existing in free cation or bridged-bond state depended on the property of the cations in electrolyte: in NaCl and LiCl solution, it is in bridges-bonded, but in HCl and KCl, it is free.
Resumo:
The ion pair between the dianion of 7,7,8, 8-tetracyanoquinodimethane(TCNQ) and Li+ were investigated by in - situ microscopic Fourier transform infrared( FTIR) spectroelectrochemical technique. The effect of ion pair increases with increasing the concentration of cation. We observed a new band at 2130 cm(-1).
Resumo:
Plussian blue(PB)/Pt modified electrode Tvas studied in the CdCl2 electrolyte solution by cyclic voltammetry and in situ FTIR spectroelectrochemistry. It was found that Cadmium ion was capable of substituting the high-spin iron of PB in an electrochemically induced substitution reaction and hexacyanoferrate cadmium (CdHCF) can be formed in the PB film. But PB and CdHCF in mixture film showed their own electrochemistry properties without serious effect on each other. The mechanism of substitution reaction has been given in detail.
Resumo:
In-situ synthesis of terbium complex with salicylic acid (Sal) in silica matrix was made by a two-step sol-gel process. The terbium complex with salicylic acid was formed in sol-gel derived silica gel, and confirmed by the luminescence excitation spectra and infrared(IR) spectra. As compared to the pure terbium complex powder, the silica gel containing terbium complex exhibits its characteristic emission and presents a longer fluorescence lifetime than that for the pure complex. The luminescence properties of the complex containing;silica gel were investigated and compared with that of both terbium doped the silica gel and thp pure complex powder. The reasons leading to the above results were also discussed.
Resumo:
In-situ synthesis of europium and terbium complexes with 1,10-phenanthroline (phen) in silica matrix by a two-step sol-gel process has been proposed. The formation of europium and terbium complexes with phen in sol-gel derived silica gel were confirmed by the luminescence excitation spectra. The silica gels that contain in-situ synthesized europium and terbium complex exhibit the characteristic emission bands of the rare earth ions. Furthermore. the rare earth ions present longer fluorescence lifetimes than the comparable pure complex powder and the complexes dissolved in ethanol solutions. The luminescence properties of the silica gels codoped with europium (or terbium) and phen were also investigated with respect to the gels doped with europium (or terbium). (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In the present paper, the electrochemical behavior of ergosterol has been investigated by in situ circular dichroism (CD) spectroelectrochemistry with long path-length thin layer cell. E-0 (1.02V), alpha n(alpha) (0.302) of the electroxidation process of ergosterol were obtained from the CD spectroelectrochemical data. The mechanism of the electroxidation process of ergosterol is suggested.
Resumo:
A process for in situ synthesis of terbium complex with salicylic acid by a two-step sol-gel method in silica matrix has been proposed. The luminescence properties of the silica gels codoped with terbium and salicylic acid have also been discussed with respect to that of the gel doped with terbium and that of pure terbium complex with salicylic acid.
Resumo:
Chromium hexacyanoferrate (CrHCF) modified grassy carbon electrode (GC) in different electrolytes was studied by cyclic voltammetry and in situ FTIR spectroelectrochemistry. The results indicate that the behavior of CrHCF firm can be understood in term of two structures: Cr1/3Cr(III)Fe(II)(CN), and MCr(III)Fe(II)(CN)(6). Besides,the film exists in amorphous state: the outer layer is porous film, while the inner layer is relatively compact. According to the electrochemical reaction of CrHCF, the lattice can contract and expand with the cations' diffusion.
Resumo:
Electrochemical redox behavior of noradrenaline in alkaline solution on a glassy carbon electrode has been investigated by in situ UV-vis and CD spectroelectrochemistry by using a long optical path thin-layer cell. The experimental data were processed by using a double logarithmic method of analysis together with nonlinear regression which confirmed that the first step in both the oxidation of noradrenaline and reduction of noradrenochrome is a two-electron irreversible process governed by an EE mechanism. The kinetic parameters of the electrode reactions, i.e., charge transfer coefficient and the number of electrons transferred, alpha(1)n(1) = 0.11 and alpha(2)n(2) = 0.23, formal potentials modified with kinetics, E-1(0') = 0.65 (+/- 0.01) V and E-2(0') = 0.72V and standard rate cnstants, k(1)(0) = 7.0(+/-0.5)x10(-5) cm s(-1), for the first and second steps in the oxidation process of noradrenaline, and similarly, alpha(1)n(1) = 0.33, alpha(2)n(2) = 0.58, E-1(0') = 0.37(+/-0.01) V, E-0' = -0.25 (+/-0.01) V and k(1)(0) approximate to k(2)(0) = 1.06 (+/-0.05)x10(-4) cm s(-1) for the first and second steps in the reduction process of noradrenochrome were also determined.
Resumo:
Cyclic voltammetry and in-situ microscopic FTIR spectroelectrochemistry were used for the electrochemical and vibrational characterizations of the reduction process of K3Fe (CN)(6) in polyethylene glycol(PEG) with LiClO4 as supporting electrolyte at a Pt microelectrode. The rate of electron transfer is a function of the concentration of the supporting electrolyte. The redox potentials and cyclic voltammetric currents vary with Li/O molar ratio. The bl-situ spectroelectrochemistry shows that the infrared spectra are influenced by the concentration of LiClO4. The bridging cyanide groups with a structure Fe-I-C drop N ... Fe-I-C drop N are formed during the reduction process of K3Fe (CN)(6). There may be an activated complex between the Lif cation and the complex anion.