140 resultados para Hash function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simulating wave nearshore (SWAN) wave model has been widely used in coastal areas, lakes and estuaries. However, we found a poor agreement between modeling results and measurements in analyzing the chosen four typical cases when we used the default parameters of the source function formulas of the SWAN to make wave simulation for the Bohai Sea. Also, it was found that at the same wind process the simulated results of two wind generation expressions (Komen, Janssen) demonstrated a large difference. Further study showed that the proportionality coefficient alpha in linear growth term of wave growth source function plays an unperceived role in the process of wave development. Based on experiments and analysis, we thought that the coefficient alpha should change rather than be a constant. Therefore, the coefficient alpha changing with the variation of friction velocity U (*) was introduced into the linear growth term of wave growth source function. Four weather processes were adopted to validate the improvement in the linear growth term. The results from the improved coefficient alpha agree much better with the measurements than those from the default constant coefficient alpha. Furthermore, the large differences of results between Komen wind generation expression and Janssen wind generation expression were eliminated. We also experimented with the four weather processes to test the new white-capping mechanisms based on the cumulative steepness method. It was found that the parameters of the new white-capping mechanisms are not suitable for the Bohai Sea, but Alkyon's white-capping mechanisms can be applicable to the Bohai Sea after amendments, demonstrating that this improvement of parameter alpha can improve the simulated results of the Bohai Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fine-grid model (1/6degrees) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3degrees) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degreesC was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degreesC (k'(30)/k'(40)) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C-18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. (C) 2002 Elsevier Science Ltd. All rights reserved.