144 resultados para Fruit trees.
Resumo:
Phyllospadix iwatensis Makino and phyllospadix japonicus Makino have similar frunt morphology and anatomy.The rhomboid fruit of Japanese phyllospadix is dark brown in colour and is characterized by two arms bearing stiff inflected bristles which can act as an anchoring system. The fruit covering consists of a thin cuticular seed coat and pericarp remains mainly fibrous endocarp. In the groove region of the fruit.the cuticular seed coat and endocarp are replaced by nucellus cells with wall in growths and crushed pigment strands with lignified walls.these tissues appera to control the transfer of nutrients to developing seed.the seed is oval with a small embryo and a large hypocotyl. the embryo is straight and simple,with the plumule containing three leaf primordia and a pair of root primordia surrounded by a cotyledon.the hypocotyl has large vontral lobe containing central provascular tissue and two small dorsal lobes.the hypocotyl contains starch.lipid and protein.and acts as a nutrient store.the seed of P.iwatensis has a dormancy period of 2-6 weeks and germination eventually reaches-65%.but is not synchronized.during germination the leaves emerge first.and then after at least three young leaves have formed and abseised.the roots emerge,usually?6 months after the commencement of germination.Utilizaton of the nutrient reserves is initially from the perihpery of the hypocotyl and then progressively towards its centre.
Resumo:
The membraneless biofuel cell (BFC) is facile prepared based on glucose oxidase and laccase as anodic and cathodic catalyst, respectively, by using 1,1'-dicarboxyferrocene as the mediators of both anode and cathode. The BFC can work by taking glucose as fuel in air-saturated solution, in which air serves as the oxidizer of the cathode. More interestingly, the fruit juice containing glucose, e.g. grape, banana or orange juice as the fuels substituting for glucose can make the BFC work. The BFC shows several advantages which have not been reported to our knowledge: (1) it is membraneless BFC which can work with same mediator on both anode and cathode; (2) fruit juice can act as fuels of BFCs substituting for usually used glucose; (3) especially, the orange juice can greatly enhance the power output rather than that of glucose, grape or banana juice. Besides, the facile and simple preparation procedure and easy accessibility of fruit juice as well as air being whenever and everywhere imply that our system has promising potential for the development and practical application of BFCs.
Resumo:
In many plant species, leaf morphology varies with altitude, an effect that has been attributed to temperature. It remains uncertain whether such a trend applies equally to juvenile and mature trees across altitudinal gradients in semi-arid mountain regions. We examined altitude-related differences in a variety of needle characteristics of juvenile (2-m tall) and mature (5-m tall) alpine spruce (Picea crassifolia Kom.) trees growing at altitudes between 2501 and 3450 m in the Qilian Mountains of northwest China. We found that stable carbon isotope composition (delta C-13), area- and mass-based leaf nitrogen concentration (N-a, N-m), number of stomata per gram of nitrogen (St/N), number of stomata per unit leaf mass (St/LM), projected leaf area per 100 needles (LA) and leaf mass per unit area (LMA) varied nonlinearly with altitude for both juvenile and mature trees, with a relationship reversal point at about 3 100 m. Stomatal density (SD) of juvenile trees remained unchanged with altitude, whereas SD and stomatal number per unit length (SNL) of mature spruce initially increased with altitude, but subsequently decreased. Although several measured indices were generally found to be higher in mature trees than in juvenile trees, N-m, leaf carbon concentration (C.), leaf water concentration. (LWC), St/N, LA and St/LM showed inconsistent differences between trees of different ages along the altitudinal gradient. In both juvenile and mature trees, VC correlated significantly with LMA, N-m, N-a, SNL, St/LM and St/N. Stomatal density, LWC and LA were only significantly correlated with delta C-13 in mature trees. These findings suggest that there are distinct ecophysiological differences between the needles of juvenile and mature trees that determine their response to changes in altitude in semi-arid mountainous regions. Variations in the fitness of forests of different ages may have important implications for modeling forest responses to changes in environmental conditions, such as predicted future temperature increases in high attitude areas associated with climate change.