159 resultados para Energy level splitting


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-spin level structures of 94,95Mo have been reinvestigated via the 16O(82Se, xnγ)94,95Mo(x = 4, 3) reactions at E(82Se) = 460 MeV. The previously reported level schemes of these two nuclei have been largely modified up to ∼11 MeV in excitation energy due to identifications of some important linking transitions. Shellmodel calculations have been made in the model space of π(p1/2, g9/2, d5/2)4 and ν(d5/2, s1/2, d3/2, g7/2, h11/2)2(3) and compared with the modified level schemes. The structures of the newly assigned high-spin states in 94,95Mo have been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work specimens of mono-crystalline silicon carbide (4H polytype) were irradiated to three successively increasing ion fluences ranging from 7.2 x 10(14) to 6.0 x 10(16) ions/cm(2) (corresponding to the peak displacement damage of 1, 4 and 13 dpa) with Ne and Xe ions respectively with the energy of 2.3 MeV/amu. The irradiated specimens were subsequently annealed at temperatures of 1173 and 1273 K. Defect structure was investigated with transmission electron microscopy (TEM) using a cross-sectional specimen preparation technique. The typical microstructures of the annealed specimens irradiated with Ne or Xe ions to high fluences are characterized by small gas bubbles in high concentration in the peak damage region and black dots and dislocation loops (located in the basal plane) in a shallower and broader depth region. Larger dislocation loops were observed in the Xe-ion irradiated specimen than in the Ne-ion irradiated specimen at the same peak damage level. The enhanced formation of dislocation loops in the case of Xe-ion irradiation is understandable by assuming stronger inclination of heavier inert-gas atoms to occupy substitute site in the peak damage region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-spin states in Pt-187 have been studied experimentally by means of in-beam gamma-ray spectroscopy techniques via the Yb-173(O-18, 4n) fusion-evaporation reaction. The high-spin level scheme of Pt-187 has been established, including three rotational bands. Based on the systematics of level structure in neighboring nuclei and by comparing the experimental and theoretical B(M1)/B(E2) ratios, configurations of 11/2+ [615], 7/2(-)[5031 and 1/2(-)[521] have been proposed for the three rotational bands, respectively. Band properties of band crossing frequency, alignment gain and signature splitting have been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-spin states of Pm-140 have been investigated through the reaction Te-126(F-19, 5n) at a beam energy of 90 MeV. A previous level scheme based on the 8(-) isomer has been updated with spin up to 23 (h) over bar. A total of 22 new levels and 41 new transitions were identified. Six collective bands were observed. Five of them were expanded or re-constructed, and one of them was newly identified. The systematic signature splitting and inversion of the yrast pi h(11/2)circle times vh(11/2) band in Pr and Pm odd-odd isotopes has been discussed. Based on the systematic comparison, two Delta I = 2 bands were proposed as double-decoupled bands; other two bands with strong Delta I = 1 M1 transitions inside the bands were suggested as oblate bands with gamma similar to -60 degrees; another band with large signature splitting has been proposed with oblate-triaxial deformation with gamma similar to -90 degrees. The characteristics for these bands have been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new image segmentation method that applies an edge-based level set method in a relay fashion. The proposed method segments an image in a series of nested subregions that are automatically created by shrinking the stabilized curves in their previous subregions. The final result is obtained by combining all boundaries detected in these subregions. The proposed method has the following three advantages: 1) It can be automatically executed without human-computer interactions; 2) it applies the edge-based level set method with relay fashion to detect all boundaries; and 3) it automatically obtains a full segmentation without specifying the number of relays in advance. The comparison experiments illustrate that the proposed method performs better than the representative level set methods, and it can obtain similar or better results compared with other popular segmentation algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the origin of robustness of yeast cell cycle cellular network through uncovering its underlying energy landscape. This is realized from the information of the steady-state probabilities by solving a discrete set of kinetic master equations for the network. We discovered that the potential landscape of yeast cell cycle network is funneled toward the global minimum, G1 state. The ratio of the energy gap between G1 and average versus roughness of the landscape termed as robustness ratio ( RR) becomes a quantitative measure of the robustness and stability for the network. The funneled landscape is quite robust against random perturbations from the inherent wiring or connections of the network. There exists a global phase transition between the more sensitive response or less self-degradation phase leading to underlying funneled global landscape with large RR, and insensitive response or more self-degradation phase leading to shallower underlying landscape of the network with small RR. Furthermore, we show that the more robust landscape also leads to less dissipation cost of the network. Least dissipation and robust landscape might be a realization of Darwinian principle of natural selection at cellular network level. It may provide an optimal criterion for network wiring connections and design.