196 resultados para Distribution of NTM
Resumo:
Mapping the spatial distribution of contaminants in soils is the basis of pollution evaluation and risk control. Interpolation methods are extensively applied in the mapping processes to estimate the heavy metal concentrations at unsampled sites. The performances of interpolation methods (inverse distance weighting, local polynomial, ordinary kriging and radial basis functions) were assessed and compared using the root mean square error for cross validation. The results indicated that all interpolation methods provided a high prediction accuracy of the mean concentration of soil heavy metals. However, the classic method based on percentages of polluted samples, gave a pollution area 23.54-41.92% larger than that estimated by interpolation methods. The difference in contaminated area estimation among the four methods reached 6.14%. According to the interpolation results, the spatial uncertainty of polluted areas was mainly located in three types of region: (a) the local maxima concentration region surrounded by low concentration (clean) sites, (b) the local minima concentration region surrounded with highly polluted samples; and (c) the boundaries of the contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The labilities of thorium fractions including mobility and bioavailability vary significantly with soil properties. The effects of soil pH and soil organic matter on the distribution and transfer of thorium fractions defined by a sequential extraction procedure were investigated. Decrease of soil pH could enhance the phytoavailability and the potential availability of thorium in soil. Increase of organic matter reduced the phytoavailability of thorium, but enhanced the potential availability of it.
Resumo:
We have found that organic light-emitting diode (OLED) performance was highly improved by using europium oxide (Eu2O3) as a buffer layer on indium tin oxide (ITO) in OLEDs based on tris-(8-hydroxyquinoline) aluminium (Alq(3)), which showed low turn-on voltage, high luminance, and high electroluminescent (EL) efficiency. The thickness of Eu2O3 generally was 0.5-1.5 nm. We investigated the effects of Eu2O3 on internal electric field distributions in the device through the analysis of current-voltage characteristics, and found that the introduction of the buffer layer balanced the internal electric field distributions in hole transport layer (HTL) and electron transport layer (ETL), which should fully explain the role of the buffer layer in improving device performance. Our investigation demonstrates that the hole injection is Fowler-Nordheim (FN) tunnelling and the electron injection is Richardson-Schottky (RS) thermionic emission, which are very significant in understanding the operational mechanism and improving the performance, of OLEDs.
Resumo:
We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We found that the first passage-time (FPT) distribution undergoes a dynamic transition at a temperature below which the FPT distribution develops a power-law tail, a signature of the intermittent nonexponential kinetic phenomena for the folding dynamics. Possible applications to single-molecule dynamics experiments are discussed.
Resumo:
More than 22 000 folding kinetic simulations were performed to study the temperature dependence of the distribution of first passage time (FPT) for the folding of an all-atom Go-like model of the second beta-hairpin fragment of protein G. We find that the mean FPT (MFPT) for folding has a U (or V)-shaped dependence on the temperature with a minimum at a characteristic optimal folding temperature T-opt*. The optimal folding temperature T-opt* is located between the thermodynamic folding transition temperature and the solidification temperature based on the Lindemann criterion for the solid. Both the T-opt* and the MFPT decrease when the energy bias gap against nonnative contacts increases. The high-order moments are nearly constant when the temperature is higher than T-opt* and start to diverge when the temperature is lower than T-opt*. The distribution of FPT is close to a log-normal-like distribution at T* greater than or equal to T-opt*. At even lower temperatures, the distribution starts to develop long power-law-like tails, indicating the non-self-averaging intermittent behavior of the folding dynamics. It is demonstrated that the distribution of FPT can also be calculated reliably from the derivative of the fraction not folded (or fraction folded), a measurable quantity by routine ensemble-averaged experimental techniques at dilute protein concentrations.
Resumo:
The content and distribution of rare earth(RE) in normal human plasma have been investigated by ultrafiltration, FPLC and ICP-MS methods, The results showed that there are trace RE in normal human plasma, and their contents are in accordance with their abundance, The RE can bond with immunoglobulin G(IgG), transferrin(Tf) and albumin(Alb) species, but mostly bond with Tf.
Resumo:
The probability distribution of the four-phase structure invariants (4PSIs) involving four pairs of structure factors is derived by integrating the direct methods with isomorphous replacement (IR). A simple expression of the reliability parameter for 16 types of invariant is given in the case of a native protein and a heavy-atom derivative. Test calculations on a protein and its heavy-atom derivative using experimental diffraction data show that the reliability for 4PSI estimates is comparable with that for the three-phase structure invariants (3PSIs), and that a large-modulus invariants method can be used to improve the accuracy.
Resumo:
Two unfractionated samples of phenolphthalein poly( aryl ether sulfone) (PES-C) were characterized in CHCl3 at 25 degrees C by applying a recently developed laser light-scattering (LLS) procedure. The Laplace inversion of precisely measured intensity-intensity time correlation function lead us first to an estimate of the characteristic line-width distribution G(Gamma) and then to the translational diffusion coefficient distribution G(D). A combination of static and dynamic LLS results enabled us to determine D = (2.69 x 10(-4))M(-0.553), which agrees with the calibration of D = (2.45 x 10(-4))M(-0.55) previously established by a set of narrowly distributed PES-C samples. Using this newly obtained scaling between D and M, we were able to convert G(D) into a differential weight distribution f(w)(M) for the two PES-C samples. The weight-average molecular weights calculated from f(w)(M) are comparable to that obtained directly from static LLS. Our results showed that using two broadly distributed samples instead of a set of narrowly distributed samples have provided not only similar final results, but also a more practical method for the PES-C characterization. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Using a recently developed laser light-scattering (LLS) procedure, we accomplished the characterization of a broadly distributed unfractionated phenolphthalein poly(aryl ether ketone) (PEK-C) in CHCl3 at 25 degrees C. The laplace inversion of precisely measured intensity-intensity time correlation function from dynamic LLS leads us first to an estimate of the characteristic line-width distribution G(Gamma) and then to the translational diffusion coefficient distribution G(D). By using a previously established calibration of D (cm(2)/s) = 2.37 X 10(-4)M(-0.57), were able to convert G(D) into a differential weight distribution f(w)(M). The weight-average molecular weight M(w) calculated from f(w)(M) agrees well with that directly measured in static LLS. Our results indicate that both the calibration and LLS procedure used in this study are ready to be applied as a routine method for the characterization of the molecular weight distribution of PEK-C. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Given a special type of triplet of reciprocal-lattice vectors in the monoclinic and orthorhombic systems, there exist eight three-phase structure seminvariants (3PSSs) for a pair of isomorphous structures. The first neighborhood of each of these 3PSSs is defined by the six magnitudes and the joint probability distribution of the corresponding six structure factors is derived according to Hauptman's neighborhood principle. This distribution leads to the conditional probability distribution of each of the 3PSSs, assuming as known the six magnitudes in its first neighborhood. The conditional probability distributions can be directly used to yield the reliable estimates (0 or pi) of the one-phase structure seminvariants (1PSSs) in the favorable case that the variances of the distributions happen to be small [Hauptman (1975). Acta Cryst. A31, 680-687]. The relevant parameters in the formulas for the monoclinic and orthorhombic systems are given in a tabular form. The applications suggest that the method is efficient for estimating the 1PSSs with values of 0 or pi.
Resumo:
The sequence distribution of the monomeric units in the styrene-acrylic acid copolymer has been obtained by calculation. The probability of long sequences of styrene increases with an increase in the content of the monomer in the copolymer. The highest distribution of short sequences of styrene takes place for the copolymer containing equimolecular amounts of styrene and acrylic acid. The copolymer which has this latter structure is inadequate for the synthesis of highly active supported complexes. When the distributions of long and short sequences of styrene are approximately equal, the activity of the Nd and Fe prepared polymer complexes is higher.
Resumo:
The result of an analysis of mollusca remains collected from the Chukchi Sea, Beaufort Sea and Bering Sea in the First Chinese National Arctic Research Expedition, from July to September, 1999 is presented. Seventeen species of mollusca have been identified, which belong to two classes: Bivalvia and Gastropoda. The compositions of the mollusca are very simple. According to the distribution pattern two groups may be distinguished among molluscan species. The Pan-Arctic and circumboreal group comprises Nuculana pernula, N.radiata, Nucula bellotii, Astarte montagui, Seripes groenlandicus, Macoma calcarea, M. moesta alaskana, Liocyrna fluctuosa, Mya pseudoarenaria and Turritella polaris. Three species, Cyclocardia crebricostata, Trichotrois coronata and Argobuccinum oregonense are components of the Pan-Arctic and Pacific boreal group. With regard to feeding habits, detritus feeders dominate. There are 7 species of detritus feeders, i.e., Nuculana pernula, N. radiata, Nucula bellotii, Macoma calcarea, M. moesta alaskana, Macoma sp. and Trichotropis coronata. Detritus feeders are dominant with regard to the numbers of species as well as to the frequency of occurrence. Macoma calcarea is the most abundant species.