282 resultados para Cathode ray tubes


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of 238U on 2μm Al foils by molecular plating technique is described. In order to obtain optimum conditions for deposition, several parameters influencing the quality of layers such as current density, distance between the anode and cathode and the deposition time were investigated. The target thickness was determined by spectrophotometry. The uniformity and morphology of the target surface were studied by means of scanning electron microscopy, energy dispersive X-ray spectrometry and Infrared spectra. The results show that uranium is deposited in its oxide or hydroxide form uniformly and adherently onto the foil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristic Ll, Lα, Lβ and Lγx-rays of Au and energy shifts produced by 20–50MeV 16O5+ beams on a thick Au ilm are measured with a Si (Li) detector. Cross-section ratios of σ(Ll)/σ(Lα), σ(Lβ)/σ(Lα) andσ(Lγ)/σ(Lα) versus O5+ energy show that consistent calculations yield considerably better agreements. Energy shifts Ll, Lα, Lβ and Lγ x-rays of Au target increase with more incidence energy. The main application for these measurements is multi-element trace analysis through particle induced x-ray emission.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A measurement of the inelastic component of the key astrophysical resonance in the 14O(α,p)17F reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the 14O(α,p)17F reaction rate. The current results for the reaction rate confirm that the 14O(α,p)17F reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the hot CNO cycles under the more extreme conditions found in x-ray bursters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider electron capture in fast collisions between a proton and hydrogen in the presence of an intense x-ray laser whose angular frequency omega is close to v(2)/2, where v is the collision velocity. We show that in such a case laser-induced capture becomes possible and that the latter proceeds via both induced photon emission and photon absorption channels and can, in principle, compete with kinematic and radiative electron capture.