213 resultados para Cascade reactions
Resumo:
Boronic pinacol ester group is not reactive in Kumada, Heck and Stille coupling reaction conditions. Fluorene-based sophisticated organoboron compounds were synthesized by means of Palladium catalyzed Kumada, Heck and Stille cross-coupling reactions from halofluorenyl boronic esters.
Resumo:
An air- and water-stable PEG-supported bidentate nitrogen ligand is prepared and its applications in the palladium-catalyzed Suzuki reaction of aryl halides with arylboronic acids in PEG and Suzuki-type reaction of aryl halides with sodium tetraphenylborate in aqueous media are reported. The homogeneous catalyst system is environmentally friendly and offers the advantages of high activity, reusability and easy separation.
Resumo:
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (Phi = 16 nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.
Resumo:
Multilayers of anionic phosphotungstic acid (PTA) clusters and positively charged protonated poly(allylamine hydrochloride) (PAH) were assembled by layer-by-layer self-assembled method on Au electrode modified by 3-mercaptopropionic acid (3-MPA). The effect of the charge of the surface of the multilayer assembly on the kinetics of the charge transfer reaction was studied by using the redox probes [Fe(CN)(6)](3-)/(4-) [Ru(NH3)(6)](2+/3+). The cyclic voltammetry experiments showed that the peak currents and peak-to-peak potential differences changed after assembling different layers on the electrode surface indicating that the charge of the surface has a significant effect on the kinetics of the studied charge transfer reactions. These reactions were studied in more detail by electrochemical impedance spectroscopy. When [Fe(CN)(6)](3-/-) was used as the redox label, multilayers that terminated with negatively charged PTA showed a high charge transfer resistance but multilayers that terminated with positively charged PAH showed lower charge transfer resistance. With [Ru(NH3)(6)](2+/3+) as the redox label, the charge transfer resistance at multilayers that terminated with positively charged PAH was much higher than at the multilayer terminated by the negatively charged PTA.
Resumo:
The chemical components in the decoctions of Chinese herbal medicines are not always the same as those in the crude herbs because of the insolubility or instability of some compounds. In this work electrospray ionization tandem mass spectrometry was used to explore the ester-exchange reactions for aconitine-type diester-diterpenoid alkaloids occurring during the process of decocting aconite root. The aconitines were screened in a diverse range of samples, including crude aconite, decoction of crude aconite, residues from decoction of crude aconite, prepared aconite, decoction of prepared aconite, decoction of prepared aconite with added palmitic acid, and decoction of a mixture of mesaconitine and hypaconitine standards with liquorice root. It was found that diester-diterpenoid aconitines were converted into lipo-alkaloids as well as monoester alkaloids by the decoction of aconite.
Resumo:
Blocked isocyanates are widely used in many kinds of one-package coatings, powder coatings and adhesives. They have also been used in water-borne polyurethane. The kinetics and mechanism of the reactions of blocked isocyanates are reviewed and two urethane forming reaction mechanisms by which a blocked isocyanate can react with a nucleophile are provided. Furthermore, effects of isocyanate structure, reaction medium, catalyst and functionality on kinetics of blocked isocyanate are discussed in detail.
Resumo:
Reactions of the Rh hydrido complex [Rh(H)(2)(PPh3)(2)(EtOH)(2)]ClO4 (1) With nitrogen ligands such as 2-(4-thiazolyl)benzimidazole (tbz). pyridazine (pdz), imidazole (im) and pyrimidine (pmd) in CH,Cl, afforded Various mononuclear Rh hydrido complexes, [Rh(H)(2)(PPh3)(2)(tbz)]CIO4 (2), [Rh(H)(2)(PPh3)(2)(pdZ)(2)]ClO(4)(.)2CH(2)Cl(2) (3). [Rh(H)Cl(PPh3)(2)(pdz)(2)](ClO4CH2Cl2)-C-. (4). [Rh(H)(2)(PPh3)(2)(im)(2)]ClO(4)(.)2CH(2)Cl(2) (5). [Rh(H)Cl(PPh3)(2)(im)(2)](ClO4CH2Cl2)-C-. (6). [Rh(H)(2)(PPh3)(2)(pmd)(2)](ClO4CH2Cl2)-C-. (7) and the Rh non-hydrido complex [RhCl2(pmd)(4)]ClO4 (8). The Rh complexes 2. 3, 5 and 6 were crystallographically characterized. The formation process was monitored by H-1 NMR and UV-Vis spectra. In all the Rh hydrido complexes, the Rh atom is coordinated by two PPh3. ligands in trans-positions and two nitrogen ligands in the cis-positions. The remaining sites Lire occupied by one or two hydride atoms to form a saturated 18-electron framework in a slightly distorted octahedral geometry. For complex 2 an appreciable inter-molecular pi interaction is observed between planes of tbz and PPh3 ligands, while an intra-molecular hydrogen bonding interaction between C-H and Cl atoms is found in complex 6.
Resumo:
A novel method to study electron-transfer (ET) reactions between ferrocene in 1,2-dichloroethane (DCE) and a redox couple of K3Fe(CN)(6) and K4Fe(CN)(6) in water using scanning electrochemical microscopy (SECM) with a three-electrode setup is reported. In this work, a water droplet that adheres to the Surface of a platinum disk electrode is immersed in a DCE solution. The aqueous redox couple serves both as a reference electrode on the platinum disk and as an electron donor/acceptor at the polarized liquid/liquid inter-face. With the present experimental approach, the liquid/liquid interface can be polarized externally, while the electron-transfer reactions between the two phases can be monitored independently by SECM. The apparent heterogeneous rate constants for the ET reactions were obtained by fitting the experimental approach curves to the theoretical values. These rate constants obey the Butler-Volmer theory i.e., them, are found to be potential dependent.
Resumo:
Room-temperature ionic liquids are good solvents for a wide of organic, inorganic and organometallic compounds. Typically consisting of nitrogen-containing organic cations and inorganic anions, they are easy to recycle, nonflammable, and have no detectable vapor pressure. More recently, ionic liquids have been found to be excellent solvents for a number of chemical reactions, e. g. hydrogenation, alkylation, epoxidation, Heck-vinylation, Suzuki cross-coupling reactions and enzyme catalyzed organic reactions. This paper focuses on the recent development of using ionic liquids as solvents for transition metal and enzyme catalyzed reactions.
Resumo:
The new topological indices A(x1)-A(x3) suggested in our laboratories were applied to the study of structure-property relationships between color reagents and their color reactions with yttrium. The topological indices of twenty asymmetrical phosphone bisazo derivatives of chromotropic acid were calculated. The work shows that QSPR can be used as a novel aid to predict the molar absorptivities of color reactions and in the long term to be helpful tool in-color reagent design. Multiple regression analysis and neural network were employed simultaneously in this study. The results demonstrated the feasibility and the effectiveness of the method.
Resumo:
Gas-phase hydrogen-deuterium (H/D) exchange reactions involving four isomeric cyclopropane derivatives were investigated under chemical ionization (CI) conditions, using D2O and CD3OD as reagent gases. There are abundant ions at [M + 1](+), [M + 2](+) and [M + 3](+) in the D2O and CD3OD positive-ion CI mass spectra of the two isomer pairs 1, 2 and 3, 4, Their CI mass spectra are identical with each pair, and so are the collision-induced dissociation (CID) spectra of ions [M + 1](+), [M + 2](+) and [M + 3](+) of each of the two isomer pairs. The CID spectra of [M + 1](+) ions indicate that they have common D/H exchange reactions within each pair, which take place between molecular ions and deuterium-labeling reagents to form the [M - H + D](+) ions. Those of their [M + 2](+) ions show that they have common D/H exchange reactions within each pair, which form the [M-d1 + H](+) ions. Those of their [M + 3](+) ions show that they have common D/H exchange reactions within each pair, which take place between the [M-d1] and deuterium-labeling reagents to produce [Md-2 + H](+) for the isomer pair 1, 2 and [M-d1 + D](+) for the Isomer pair 3, 4. The number and position, and active order of the active hydrogen atoms of the isomer pairs 1, 2 and 3, 4 were determined. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The gas-phase ion-molecule reactions of C-60 with the plasma generated from methyl acrylate under self-chemical ionization conditions were studied by use of a triple-quadrupole mass spectrometer. The adduct cation [C60C3H3O](+) and protonated molecular ion [C60H](+) were observed as the major product ions. The former adduct ion is formed by electrophilic reaction of C-60 with the ion [CH2=CHCO](+), a main fragment ion resulting from the methyl acrylate molecular ion [CH2=CHCOOCH3](+) through alpha cleavage. The latter ion is generated by proton transfer from protonated methyl acrylate to C-60. Semi-empirical quantum chemical calculations have been performed for the eight possible isomers of [C60C3H3O](+) at the Hartree-Fock level by use of the AMI method. The results show three types of cycloadducts as the most stable structures among the possible isomers.
Resumo:
All structural geometries of intermediates, transition states and product are, optimized at HF/ LANL2DZ level under the effective core potential approximation. The potential energy profile for some elementary reactions of hydroformylation catalyzed by Co-2(CO)(6)(PH3)(2), consisting of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination, are calculated, The transition states are further confirmed by having one and only one imaginary vibrational frequency, The activation energies of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination are 54, 02, 134, 02 and 43. 44 kJ/mol, respectively.