149 resultados para Capacitance meters.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical measurement, quantum chemical method, and scanning electron microscopy (SEM) were performed to investigate the inhibitive effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine(TPT) on the corrosion of mild steel in 1mol.L-1 HCl at room temperature. Impedance spectroscopy measurement showed that the polarization resistance increased and that double layer capacitance decreased with the increase in the inhibitive concentration, and the results of potentiodynamic polarization showed that the inhibitors suppressed both cathodic and anodic processes of steel corrosion without change in the mechanism. Higher the orbital density distribution strength of the lowest unoccupied molecular orbital, higher is the molecule dipole, and lower energy gap between the energy of the highest occupied molecular orbital and the energy of the lowest unoccupied molecular orbital resulted in higher inhibitory efficiency. The results of SEM analysis showed that the metal was protected from aggressive corrosion by the addition of TTC and TPT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

长基线声学定位系统是水下机器人广泛应用的外部导航设备。以对"CR-02"6000m自治水下机器人(简称AUV)技术的深入开发为背景,提出在原有长基线(LBL)定位系统的基础上增加导航功能的方案。由于海水介质非均匀性与复杂的时空变化特性,给基于测距的位置计算带来很大困难。采用平均声速法计算耗时小而误差大,波阵面定位法误差小而耗时大。为解决这个矛盾,根据AUV深度传感器给出的深度信息,采用本征声线快速计算方法解算AUV的水平面位置。与波阵面法、平均声速法进行了综合比较。仿真实验表明该方法具有优良的性能,满足AUV导航需要。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

依据6000米自治水下机器人及其长基线声学定位系统现有的导航设备,将测距声信标和机器人载体携带的低成本导航传感器:涡轮式计程仪,压力传感器以及TCM2电子罗盘测量的导航数据相融合,分别提出两种基于EKF的导航数据融合算法,对机器人的位置以及水流参数进行估计,解决复杂环境下的深水机器人位置估计问题.蒙特卡洛仿真实验和湖上试验数据后处理表明,设计的位置估计算法收敛快,精度高,计算时间小,能够满足深水机器人的导航需要.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

叙述了在自动控制、仪器仪表、信号变换以及传感器信号采集与处理等电路中实现大时间常数的一种新方法。根据近代电工理论中的回转器原理 ,利用运算放大器及电阻、电容器件可以实现模拟电容和模拟电感。给出了理论计算与应用实例

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the example of Damintun Depression, Liaohe Oilfield, different methods to study fracture distribution were propsosed, i.e. combined crop, core, log, with seismic attribute and paleo-stress field to predict fractural reservoir. The following conclusions are drawn: 1. Secondary fracture and dissolution pore are the main reservoir space of fractured reservoir in Damintun buried hills through observing more than 270 meters core in 27 wells. Among them, structural fracture is the main reservoir spcace in Archaean metamorphism whose main mineral are silicates, while dissolution pore and structural fracture are the main reservoir space in Protozoic carbonate which has been proved with high dissolution. Structural fracture is not only the main reservoir space but also the influent path. 2. Actual core observation and log identification proved that the formation of buried hills have the following zone: weathering crust, fracturaed zone and compact zone, among which the weathering crust and fractured zone are the main reservoir. 3. The mineralogical component of rock is the inner factor and the tectonization is the outer factor, which control the development of structural fracture. The content of brittle material in rock influences the development of structural fracture. Dissolution, chemical eluviations, weathering and fill-up affect the development of structural fracture. 4. Basement faults control the distribution of structural fracture in Damintun Depression. The trend of fracture is consistent with that of faults and there is often large-scale fractural zone around faults. 5. Based on log response, the fracture is identified with core observation, imaging well log and ANN, which can provide geological basis for optimized perforation. 6. The methods for predicting fracture with structure restoration, seismic inversion and paleo-stress simulation aiming at different types of buried-hills reservoir, and then the spatial distribution of the fracture and density is obtained, which can provide geological basis for well site adjustment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulige Gasfield, with a basically proven reserve as high as one trillion cubic meters, is one giant gas field discovered in China. The major gas -bearing layers are Upper Paleozoic strata with fluvial-lacustrine sedimentary facies. Generally, gas reservoirs in this field are characteristic by "five low" properties, namely low porosity, low permeability, low formation pressure, low productivity and low gas abundance. Reservoirs in this field also feature in a large distribution area, thin single sandbody thickness, poor reservoir physical properties, thin effective reservoir thickness, sharp horizontal and/or vertical changes in reservoir properties as well as poor connectivity between different reservoirs. Although outstanding achievements have been acquired in this field, there are still several problems in the evaluation and development of the reservoirs, such as: the relation between seismic attributes and reservoir property parameters is not exclusive, which yields more than one solution in using seismic attributes to predict reservoir parameters; the wave impedance distribution ranges of sandstone and mudstone are overlapped, means it is impossible to distinguish them through the application of post-stack impedance inversion; studies on seismic petrophysics, reservoir geophysical properties, wave reflection models and AVO features have a poor foundation, makes it difficult to recognize the specific differences between tight sandstone and gas-bearing sandstone and their distribution laws. These are the main reasons causing the low well drilling success rate and poor economic returns, which usually result in ineffective development and utilization of the field. Therefore, it is of great importance to perform studies on identification and prediction of effective reservoirs in low permeable sandstone strata. Taking the 2D and 3D multiwave-multicomponent seismic exploration block in Su6-Su5 area of Sulige field as a study area and He 8 member as target bed, analysis of the target bed sedimentary characteristics and logging data properties are performed, while criteria to identify effective reservoirs are determined. Then, techniques and technologies such as pre-stack seismic information (AVO, elastic impedance, wave-let absorption attenuation) and Gamma inversion, reservoir litological and geophysical properties prediction are used to increase the precision in identifying and predicting effective reservoirs; while P-wave and S-wave impedance, ratio of P/S wave velocities, rock elastic parameters and elastic impedance are used to perform sandstone gas-bearing property identification and gas reservoir thickness prediction. Innovative achievements are summarized as follows: 1. The study of this thesis is the first time that multiwave-multicomponent seismic data are used to identify and predict non-marine classic reservoirs in China. Through the application of multiwave-multicomponents seismic data and integration of both pre-stack and post-stack seismic data, a set of workflows and methods to perform high-precision prediction of effective reservoirs in low permeable sandstone is established systematically. 2. Four key techniques to perform effective reservoir prediction including AVO analysis, pre-stack elastic wave impedance inversion, elastic parameters inversion, and absorption attenuation analysis are developed, utilizing pre-stack seismic data to the utmost and increasing the correct rate for effective reservoir prediction to 83% from the former 67% with routine methods. 3. This thesis summarizes techniques and technologies used in the identification reservoir gas-bearing properties using multiwave-multicomponent seismic data. And for the first time, quantitative analysis on reservoir fluids such as oil, gas, and/or water are carried out, and characteristic lithology prediction techniques through the integration of pre-stack and post-stack seismic prediction techniques, common seismic inversion and rock elastic parameters inversion, as well as P-wave inversion and converted wave inversion is put forward, further increasing the correct rate of effective reservoir prediction in this area to 90%. 4. Ten seismic attribute parameters are selected in the 3D multi-wave area to perform a comprehensive evaluation on effective reservoirs using weighted-factor method. The results show that the first class effective reservoir covers an area of 10.08% of the study area, while the second and the third class reservoirs take 43.8% and 46% respectively, sharply increasing the success rate for appraisal and development wells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

South China Sea is located in the convergence of Eurasian plate, the Pacific Ocean plate and Indian Ocean-Australia plate. The total area is about 3,500,000 km2, the geologic structure is complicated, and the structure line cut off reciprocal is the marginal sea taking form by that the seafloor spreads during the middle Oligocene. South China Sea continental margin have developed more than 10 large oil-gas bearing basins and a number of medium-small sized basins. These basins contain abundant mineral resources such as oil & gas. The marginal deepwater area in the north part of South China Sea has become our country’s strategic energy prospecting frontier. The deepwater area of Zhujiangkou and Qiongdongnan basins is the research target in this thesis. The thesis studied deep structure and the earth dynamics of the north part of South China Sea margin, and these researches provide scientific basis for oil-gas resources strategic investigation and valuation in deepwater sea area of north part slope of South China Sea. In order to develop the research of rebuilding velocities and density architecture of earth shell in region of interest, in marginal deepwater area in the north part of South China, we adopted 14 long-cable seismic reflection profile data of 3556.41 kilometers in total, the gravity measurement data along profiles (3851.44 kilometers in total), the magnetic observation along profiles (3838.4 kilometers in total) and depth measurement along profile, the logging data of 11 wells in project, the interpreted fault parameter and preexisting geologic and geophysical research achievement. This thesis has carried out concretely studying research as follows: 1. Overlay-velocity data sampling and analysis, interval velocity calculation, time-depth conversion, model building of earth shell velocity and layering character of earth shell are studied on 14 deep sections. Velocity structure in region of interest has revealed: Changchang is the sag with thinnest crust in Qiongdongnan basin; the sedimentary thickness lowers gradually from north to south, and the thickness change from west to east is milder. The sags’ sedimentary velocities in Qiongdongnan basin have obvious demarcation. The velocity of the 8000 meters sedimentary rocks is 4700 m/s in Shunde sag and Baiyun sag, and is the lowest; at that depth, the velocity very different in Liwan sag and Baiyun sag, which is about 800m/s. 2. Extracting gravity data and building of initial crust density model along the section; With Bouguer gravity anomaly data as constraint, revising density distributes of initial model, and building the crust density model. 3. With crust velocity and density as constraint, correcting the effect of thermobaric field and constructing constitution structure of rock in region of interest. By this research, we known that rocks in Zhujiangkou upper crustal layer are chiefly granite-gneiss, quartzite, granodiorite and basalt, however, rocks in Qiongdongnan basin upper earth shell are chiefly composed of granite-gneiss, quartzite, granodiorite, diorite and basalt. 4. Synthetically crust velocity and density structure, gaining expanding factor on crust and entire crust along section. The result is indicated: the expanding factor in every sag rises from northwest to southeast, which have reflected thinning characteristic of crust from continent to ocean. Intra-crustal deformation degree in Changchang and Ledong-Lingshui sag is bigger than that in Songnan-Baodao sag. Entire crust extension factor in Changchang and Songnan-Baodao sag is greater than that in Ledong-Lingshui sag, which can make an explanation of frequently event and longer heating process in middle-east of Qiongdongnan basin. 5. Synthesize multidisciplinary information to discuss the earth dynamics significance of discordogenic seismic profile in deepwater area of Zhujiangkou and Qiongdongnan basins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unique geologic, geomorphic and climatic conditions of southeast Tibet have made the region to develop the multi-style and frequently occurring geologic hazards, especially the collapses and landslides and debris flows along the section of Ranwu-Lulang in Sichuan-Tibet highway. However, most of those geologic hazards have close relationship with the loose accumulations. That is, the loose accumulations are the main carrier of most geologic hazards. Thereof, the huge-thick accumulations along the highway is regarded as the objective in the thesis to study the geologic background, hazarding model and mitigation methods comprehensively, based on the multi-disciplinary theories and former materials. First of all, in the paper, based on field engineering geologic investigations, the genetic type and the characteristics of spatiotemporal distribution of the huge-thick loose accumulations along the highway, have been analysized from the factors of regional geology and geomorphy and climate, as well as the coupling acting of those factors with inoculation and eruption of the loose accumulations geologic hazards. The huge-thick loose accumulations has complex genetic types and specific regulations of spatiotemporal distribution, closely controlled by the outer environment of the region. The accumulations are composed of earth and boulder, with disorder structure and poor sorting, specific forming environments and depositing conditions. And its physical and mechanic properties are greatly distinguished from rock and common earth inland. When Sichuan-Tibet highway was firstly constructed along the north bank of Purlung Tsangpo River, the huge-thick loose accumulations was cut into many high and steep slopes. Through the survey to the cut-slopes and systematic investigation to their failures, the combination of height and angle of the accumulations slope has been obtained. At the same time, the types of genetic structure of those cut-slopes are also analysized and concluded, as well as their failure models. It is studied in the paper that there are piaster, duality, multielement and complexity types in genetic structure, and rip-dump-repose, rip-shear-slip and weathering-flake types in failure models. Moreover, it is briefly introduced present engineering performance methods and techniques dealing with the deformation and failure of the accumulations cut-slope. It is also suggested that several new techniques of slope enforcement and the method of landslide and rockfall avoiding should be applied. The research of high and steep cut-slope along the highway has broadened the acknowledgement of the combination of cut-slope height and angle. Especially, the dissertation also has made the monographic studies about the geologic background and hazarding models and prevention methods of some classic but difficult accumulations geologic hazards. They are: (1) Research of the engineering geologic background of the 102 landslide group and key problems about the project of tunnel. The 102 landslide group is a famous accumulational one composed of glacial tills and glaciofuvial deposit. The tunnel project is a feasible and optional one which can solve the present plight of “sliding after just harnessing” in the 102 section. Based on the glacial geomorphy and its depositing character, distribution of seepage line, a few drillhole materials and some surveying data, the position of contact surface between gneiss and accumulations has been recognized, and the retreating velocities of three different time scales (short, medium and long term) have been approximately calculated, and the weathering thickness of gneiss has also been estimated in the paper. On the basis of above acknowledgement, new engineering geomechnic mode is established. Numerical analysis about the stability of the No.2 landslide is done by way of FLAC program, which supplies the conclusion that the landslide there develops periodically. Thereof, 4 projects of tunnel going through the landslide have been put forwards. Safety distance of the tunnel from clinohefron has been numerically analysized. (2) Research of the geologic setting and disaster model and hazard mitigation of sliding-sand-slope. From the geologic setting of talus cone, it is indicated that the sliding-sand-slope is the process of the re-transportation and re-deposit of sand under the gravity action and from the talus cone. It is the failure of the talus cone essentially. The layering structure of the sliding-sand-slope is discovered. The models of movement and failure of the sliding-sand-slope has been put forwards. The technique, “abamurus+grass-bush fence+degradable culture pan”, is suggested to enforcement and green the sliding-sand-slope. (3) Characteristics and hazarding model and disaster mitigation of debris flow. The sources of solid material of three oversize debris flows have been analysized. It is found that a large amount of moraine existing in the glacial valley and large landslide dam-break are the two important features for oversize debris flow to be taken place. The disaster models of oversize and common debris flows have been generalized respectively. The former model better interpret the event of the Yigong super-large landslide-dam breaking. The features of common debris flow along the highway section, scouring and silting and burying and impacting, are formulated carefully. It is suggested that check dam is a better engineering structure to prevent valley from steeply scouring by debris flow. Moreover, the function of check dam in enforcing the slope is numerically calculated by FLAC program. (4) Songzong ancient ice-dammed lake and its slope stability. The lacustrine profile in Songzong landslide, more than 88 meters thick, is carefully described and measured. The Optical Simulated Luminescence (OSL) ages in the bottom and top of the silty clay layer are 22.5±3.3 kaB.P., 16.1±1.7 kaB.P., respectively. It is indicated by the ages that the lacustrine deposits formed during the Last Glacial Maximum ranging from 25ka B.P. to 15ka B.P. The special characteristics of the lacustrine sediment and the ancient lake line in Songzong basin indicated that the lacustrine sediment is related to the blocking of the Purlung Tsangpo River by the glacier in Last Glacial Maximum from Dongqu valley. The characteristics of the lacustrine profile also indicate that the Songzong ice-dammed lake might run through the Last Glacial Maximum. Two dimensional numerical modeling and analysis are done to simulate the slope stability under the conditions of nature and earthquake by FLAC program. The factor of safety of the lacusrtine slope is 1.04, but it will take place horizontal flow under earthquake activity due to the liquefaction of the 18.33 m silt layer. The realign to prevent the road from landslide is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tazhong-Bachu region is located in the Western Tarim basin.The early Permian magmatic rocks occur in the earth surface of Tazhong-Bachu region are mainly distributed in Kepintag,Mazhartag and Wajilitag region. There are a lot of wells, in which researchers found the early Permian magmatic rocks,in desert cover area.Most magmatic rocks are basic rocks, a few of which are ultrabasic rocks and intermediate-acid magmatic rocks.The ultrabasic rocks are are mainly occur in the Cryptoexplosive Breccia Pipes ,which is located in the volcanic complex body of Wajilitag region.The basic rocks can be divided into three rock types:The first type of the magmatic rocks in Tazhong-Bachu region is volcanic rock ,which occurs in the Lower Permian Kupukuziman Formation and Kaipaizileike Formation. Most Volcanic rocks are basalts,a few of which are volcanic breccias and pyroclastic rocks.The basalts are distributed in stratiform occurrences and interbeded the clastic rocks in Kepintag region.The attitudes of the basalts are nearly horizontal.Columnar Joints, gas pore textures and amygdaloidal structure are to develop in basalts.The second type of the magmatic rocks in Tazhong-Bachu region is diabase,which occurs in Mazhartag region.Diabase dike swarms occur in the stratums of Silurian, Devonian, Carboniferous and Lower Permian.They make from NNW direction to SSE direction, the obliquity of stratum is greater than 60°, and the dike thickness is form several cm to several meters. Diabasic texture is found in the rocks .The first type of the magmatic rocks in Tazhong-Bachu region are gabbro- pyroxenite rocks ,which occur in the Wajilitag igneous complex body. The intermediate-acid magmatic rocks, which are mainly syenites, are located in Mazhartag and Wajiltag region. But they are small in the whole Tazhong-Bachu region.There are intermediate-acid magmatic rocks,which are mainly dacite,in the northeast part of the wells in Tazhong-Bachu region.But ,it is not found in earth surface.Through systematical geochemical research of early Permian magmatic rocks,which are distributed in Kepintag,Mazhartag, Wajilitag region and the wells such as F1 well、Z1 well、Z13 well、TZ18 well、H3 well、H4 well et al., the focus on the geochronologic characteristics, the main element,trace element and REE geochemistry, the mineralogic characteristics, the Sr-Nd and Pb isotopic characteristics are put forward. The main points are: 1、A combined study of CL imaging and LA-ICP-MS U-Pb dating were carried out for zircon grains of the magmatic rocks in the Tazhong-Bachu region from the Tarim basin.The results of the systematic zircon LA-ICP-MS U-Pb dating reveal 272±6Ma to 291±10Ma for the magamatic rocks. It indicated that Early Permian is an important period of magmatic acvivity in the Tazhong-Bachu region. 2、There are a big hunch in the curves of primitive mantle-normalized trace element concentrations in the early Permian magmatic rocks from Kepintag, Mazhartag, Wajilitag region and the 14 wells. Light rare earth elements are comparatively rich and heavy rare earth elements are comparatively poor. The slope rates are same between light rare erath elements and heavy rare earth elements. It is not like the curves of the basalts in the convergent margin of plate , in which the slope rates of light rare erath elements is bigger than the alope rates of heavy rare erath elements, and the curves of heavy rare earth elements are comparatively flat. The magmatic rocks of Tazhong-Bachu region rarely have the characteristics of the basalts in the convergent margin of plate, which is that Tantalum, Niobium and Titanium are much poor, and Zirconium, Hafnium and Phosphorus are moderately poor. The magamatic rocks are mostly alkaline, which is indicated by the dots of the (Na2O+K2O)-SiO2 identification diagram. All of these indicate that the early Permian magmatic rocks were formed in an extension environment of intraplate. 3、The Thorium abundance is high and Tantalum abundance is low in most magmatic rocks from Tazhong-Bachu reguion, which is formed for crustal contamination.In the Th/Yb-Ta/Yb identification diagram,most dots are in the region, which means active continental margin, but a few dots are in the region, which means mantle source. It indicated the feeding of continental crust materials. 4、The magnesium content of the olvines from Wagilitag region is richest, and the olvines from Kepintag region is poorest in the tree region. 5、Through the the Sr-Nd and Pb isotopic study of the basalts and diabases from the F1 well core, Z1 well core, Z13 well core,TZ18 well core, and the basalts,gabbros, diabases(diabase-prophyrites) and pl-peridotites from Kepintag,Mazhartag, Wajilitag region , it indicated that all isotopic data is similar and close to enriched mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luo Ning ( Mineralogy, Petrology, Deposit Mineralogy) Directed by Fu Liyun With the increase of the level of exploration and development, North China field, as one of the maturing fields in the east, has gradually turned their prospecting targets to frontiers such as deep zones, lithologic hydrocarbon reservoirs, low permeable layers, special lithostromes, etc, which propose new challenges to mating technique of exploration engineering. In it, the special lithostrome of clay carbonate in Shu-Lu cave in Middle Flank exploration area locates in Es_3 generating rock. The area distribution is large, formation thickness is over 100 meters, the oil accumulation condition is excellent, prognostic reserves is over 80,000,000 tons, but how to effectively stimulate the special low permeable and fractured reservoir has become the bottle neck problem of stimulation and stable yields. In this thesis, through comprehensive evaluation and analysis of lithology, lithomechanics, hydrocarbon reservoir characteristics, the characteristics of fluid flow through porous medium and the stimulation measures in the past, we acquire new cognition of clay carbonate reservoirs, in addition, the research and application of first hydraulic fracturing has gained positive effect and formed commensurable comprehensive reservoir evaluation technique and mating engineering technique of hydraulic fracturing. The main cognitions and achievements are as follows: 1.Study of geological information such as lithololy analysis and nuclear magnetic logging, etc, indicates that clay carbonate formation of Shu-Lu cave is anisotropic, low permeable with high shale content, whose accumulation space gives priority to microcracks. 2.The analysis of lithomechanics of clay carbonate indicates that the hardness is moderate, Young’s modulus is between that of sandstone and limestone, clay carbonate presents plastic property and its breakdown pressure is high because of the deep buried depth. 3.The analysis of the drillstem test curves indicates that the flow and build-up pressure curve of clay carbonate of Shu-Lu cave mainly has three types: formation contamination block-up type, low permeable type, formation energy accumulation slowness type; the reservoir characteristics presents double porosity media, radial compounding, uniform flow vertical fracture, isotropy, moniliform reservoir type. The target well Jingu 3 belongs to moniliform reservoir type. 4.Through recognition and re-evaluation of the treatment effect and technologic limitations of acidizing, acid fracturing and gelled acidizing in the past, based on the sufficient survey and study of hydraulic fracturing home and abroad, combined with comprehensive formation study of target well, we launched the study of the optimization of hydraulic fracturing technique, forming the principal clue and commensurable mating technology aimed at clay carbonate formation, whose targets are preventing leak off, preventing sand bridge, preventing embedment, controlling fracture height, forming long fracture. 5. Recognition of stimulation effect evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to carry out high-precision three-dimensional "integration" for the characteristics of the secondary seismic exploration for Biyang Depression, in the implementation process, through a combination of scientific research and production, summed up high-precision seismic acquisition, processing and interpretation technologies suitable for the eastern part of the old liberated areas, achieved the following results: 1. high-precision complex three-dimensional seismic exploration technology series suitable for shallow depression Biyang block group. To highlight the shallow seismic signal, apply goal-based observing system design, trail from the small panel to receive and protect the shallow treatment of a range of technologies; to explain the use of three-dimensional visualization and coherent combination of full-body three-dimensional fine interpretation identification of the 50-100 m below the unconformity surface and its formation of about 10 meters of the distribution of small faults and improve the small block and stratigraphic unconformity traps recognition. 2. high-precision series of three-dimensional seismic exploration technology suitable for deep depression Biyang low signal to noise ratio of information. Binding model using forward and lighting technology, wide-angle observation system covering the design, multiple suppression and raise the energy of deep seismic reflection processing and interpretation of detailed, comprehensive reservoir description, such as research and technology, identified a number of different types of traps. 3. high-precision seismic exploration technology series for the southern Biyang Depression high steep three-dimensional structure. The use of new technology of seismic wave scattering theory and high-precision velocity model based on pre-stack time migration and depth migration imaging of seismic data and other high-precision processing technology, in order to identify the southern steep slope of the local structure prediction and analysis of sandstone bedrock surface patterns provide a wealth of information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a part of Gangdisi-Nianqingtanggula plate, Cuoqin basin (N 29°3O'~33°20'; E 80°~90°) is situated in the west of the Tibet autonomous Region, with an area of 100000 square kilometers. Cretaceous shallow-water carbonate is widely distributed in this basin. Its accumulative thickness is more than 1000 meters. Sedimentary facies of cretaceous shallow-water carbonate and carbon isotope feature are studied in details here. On basis of two main sections researched comprehensively, five facies marks are found. With the combination of Wilson's model and ramp model, a platform-mild slope model are put forward, which is thought to be a comprehensive model for this area. There are three sedimentary circles which are comprised of terrestrial clastic tidal flat and carbonate platform facies in Duoba Member of Duoni Formation. Langshan Formation is mainly comprised of carbonate platform facies. We also studied the carbon isotope features influenced by Cretaceous Aptian-Albian's oceanic anoxic events (OAE). After correlating the δ~(13)C curves of the studied section with that of Peregrina Canyon section in Mexico, we find that there are similar δ~(13)C curves fluctuation styles, namely there is also a δ~(13)C positive excursion in shallow-water carbonate in the studied area, and the degree of δ~(13)C positive excursion in shallow-water carbonate is much higher. There are two main causes which should interpret above δ~(13)C positive excursion feature: on the one hand ,much organic carbon take much 12C off when they are buried with a higher speed during the OAE, which lead to the ~(12)C rise of oceanic total dissolved carbon (TDC),on the other hand, during the OAE there are stratification structures in pale-ocean, in the upper mixed layer with high carbon fixation (HCML). There are so much plankton organisms which absorb much ~(12)C as the ~(13)C of shallow-water carbonate in this layer rise higher. Furthermore, on the basis of the theories of carbonate isotope strata, we suggest that the currently used boundary between Aptian and Albian in the studied area is possibly above the international one, which means the main parts of Duoba Member of Duoni Foramatiom in this area should be belong to Albian in stead of Aptian.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earlier studies on the distribution of geological environmental indicators in China revealed drastic changes from a zonal climate pattern (planetary-wave-dominant pattern) in the Paleogene to a monsoon-dominant one in the Neogene, which suggested an inception of the initial East-Asian summer monsoon. However, there are different views about the time and causes of the changes.Here, we attempt to compile a series of paleoenvironmental maps based on newly collected climate indicators from the literatures and chronologically constrained evidence of geological maps in order to re-examine the temporal and spatial evolution of climate belts in China during the Cenozoic with special emphasis on the changes of the arid belt. These indicators include mammalian fauna, coal, carbonate concretions, jarosite, salt, gypsum deposits and pollen assemblages etc, with chronological controls that we believe reliable. Pollen assemblages and mammalian fauna have been classified into three categories (arid, semi-arid/sub-humid, humid) to reflect the intensity of aridity/humidity. Salt, jarosite and gypsum deposits are classified as the arid indicators. Carbonate concretions and coal are classified into the semi-arid/sub-humid and humid one respectively. Paleoenvironmental maps at 8 time slices have been reconstructed. They are the Paleocene, Eocene, Oligocene, Miocene, Early Miocene, Middle Miocene, Late Miocene and Pliocene.And furthermore, we attempt to use IAP^AGCM to simulate the evolution of climate belts in emphasizing on the changes of the rain band, and compare the results with the paleoenvironmental maps in order to examine the causes of the drastic paleoenvironmental changes near the Oligocene/Miocene boundary. 36 sensitive numerical experiments are carried out using the IAP__AGCM to analyze the impacts of the uplift of the Himalayan-Tibetan complex, shrinkage of the Paratethys Sea, expansion of the South China Sea and the development of the polar ice sheets on rain band in China.The main conclusions are as follows:The obtained results essentially confirm the earlier conclusions about a zonal climate pattern in the Paleogene and a different pattern in the Neogene, and illustrate that a monsoon-dominant environmental pattern with inland aridity formed by the Early Miocene, which is temporally consist with the onset of eolian deposits in China.Cenozoic cooling and the formation of polar ice sheets are unlikely the main causes to the changes of environmental patterns mentioned above in China. But northern hemispheric cooling and the ice-sheets can intensify the Siberian High Pressure, and strengthen the winter monsoon circulations and enhance the aridity in the west part of China. These results support the earlier studies.Shrinkage of the Paratethys Sea and uplift of the Himalayan-Tibetan complex played important roles in strengthening the East Asian monsoon and induceing the above changes of environmental pattern, which is consistent with the earlier studies. Furthermore, "the monsoon-dominant pattern" appears when the Himalayan-Tibetan complex reaches to about 1000-2000 meters high and the Paratethys Sea retreats to the Turan Plate.4) Expansion of the South China Sea is another significant factor that drives the evolution of environmental patterns. We believe that the above three factors co-act and drive the change of the environmental patterns from a planetary-wave-dominant one to a monsoon-dominant one. However, the impacts of each factor vary by regions. The uplift mainly increases the humidity in Southwestern China and the aridity in northwestern country. The shrinkage mainly increases the humidity in Northern China and also enhances the aridity in the northwestern country. The expansion greatly increases the humidity in the south part of China.