325 resultados para CRYSTALLINE POLYMER BLENDS
Resumo:
Blends of nylon-6 and epoxidised ethylene propylene diene (eEPDM) rubber were prepared through reactive mixing. It is found that the toughness of nylon-6 can be much improved by this method, and that the particle size of eEPDM is much smaller than that of unexpoxidised EPDM (uEPDM) rubber in a nylon-6 matrix. This indicates that the epoxy group in eEPDM could react with a nylon-6 end group to form a graft copolymer which could act as an interfacial compatibiliser between the nylon-6 and the eEPDM rubber dispersed phase. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Isothermal melt and cold crystallization kinetics of PEEKK have been investigated by differential scanning calorimetry in two temperature regions. During the primary crystallization process, the relative crystallinity develops with a time dependence described by the Avrami equation, with exponent n = 2 for both melt and cold crystallization. The activation energies are -544.5 and 466.7 kJ/mol for crystallization from the melt and amorphous glassy state, respectively. The equilibrium melting point T-m(o) is estimated to be 371 degrees C by using the Hoffman-Weeks approach. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma=10 erg/cm(2) and sigma(e) = 60 erg/cm(2), respectively. The work of chain folding q is determined as 3.98 kcal/mol. These observed crystallization kinetic characteristics of PEEKK are compared with those of PEEK. (C) 1997 Elsevier Science Ltd.
Resumo:
The thermal properties of ethylene propylene copolymer-grafted-acrylic acid (EP-g-AA) were investigated by using differential scanning calorimetry (DSC). Compared with the ethylene propylene copolymer (EP), the peak values of the melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, the crystallization temperature (T-c) increased about 8-12 degrees C, and the melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of the ungrafted sample was 1.6-1.8, and that of grafted samples were all above 2, which indicated that the grafted monomer could become the crystal nuclei for the crystallization of propylene sequence. With increasing grafted monomer content, the crystallization rate of propylene sequence in grafted EP increased; it might be the result of rapid nucleation rate and crystal growth rate.
Resumo:
A super-tough polycarbonate (PC) blend was obtained by using epoxidized ethylene propylene diene (eEPDM) rubber as modifier. The notched Izod impact strength of PC/eEPDM (96/4) blend shows a great improvement, with a value about 25 times of that of pure PC. Finely and homogeneously dispersed rubber particles (0.2-0.8 mu m) in the PC matrix indicated good adhesion between the eEPDM rubber phase and the PC matrix. (C) 1997 Elsevier Science Ltd.
Resumo:
Ring-banded spherulites in polymer blends of poly(epsilon-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) were investigated by optical microscopy equipped with a digital image analysis system. PCL/SAN blends exhibit not only spherulites with a Maltese cross, but also distinct extinction rings. The periodic distance of rings changes with blend ratio and crystallization temperature and was plotted as a function of the undercooling and overall mobility of the mixtures, respectively. It was found that the overall mobility of chain segments in the mixtures could be mainly attributed to the origin of the formation of ring-banded spherulites. It was believed that for the first time a quantitative experimental result was obtained about the relationship of periodic distance of rings and the overall mobility of the mixtures. This relationship may be useful to explain the formation mechanism of ring-banded spherulites in polymer blends or even in homopolymers in the future. (C) 1977 Elsevier Science Ltd.
Application of the Sanchez-Lacombe lattice fluid theory to the system pvme/ps and model calculations
Resumo:
Cloud point curves reported in the literature for five representatives of the system poly(vinyl methyl ether)/polystyrene were evaluated theoretically by means of the Sanchez-Lacombe lattice fluid theory. The measured phase separation behavior can be described within experimental error using only one adjustable parameter (quantifying the interaction between the unlike mers). The Flory-Huggins interaction parameters calculated from this theoretical description depend in good approximation linearly on composition (volume fractions) and on the inverse temperature. An evaluation of these data yields a maximum heat effect which is almost one order of magnitude less (ca. -0.25 J/cm(3)) than obtained via Hess's cycle (dissolution of the components and of the blend) from calorimetric measurements. Model calculations on the basis of the present theory demonstrate that the critical points shift to a different extent upon a certain relative change in the molar mass of the blend components. The sensitivity of the calculated phase diagrams against changes in the scaling parameter decreases in the following order: interaction energies between unlike mers, differences in the scaling temperatures, pressures and densities.
Resumo:
Isothermal melt and cold crystallization kinetics of PEDEKmK linked by meta-phenyl and biphenyl were investigated by differential scanning calorimetry in two temperature regions. Avrami analysis is used to describe the primary stages of the melt and cold crystallization, with exponent n = 2 and n = 4, respectively. The activation energies are -118 kJ/mol and 510 kJ/mol for crystallization from the melt and the glassy states, respectively. The equilibrium melting point T-m(0) is estimated to be 309 degrees C by using the Hoffman-Weeks approach, which compares favorably with determination from the Thomson-Gibbs method. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma = 8.45 erg/cm(2) and sigma(e) = 45.17 erg/cm(2), respectively. The work of chain folding q is determined as 3.06 kcal/mol. These observed crystallization characteristics of PEDEKmK are compared with those of the other members of poly(aryl ether ketone) family. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The microphase transition in a styrene-butadiene-styrene triblock copolymer was studied by rheometric mechanical spectroscopy. A high-temperature-melt rheological transition from the highly elastic, nonlinear viscous behavior typical of a multiphase structure to linear viscous behavior with insignificant elasticity typical of a single-phase structure was observed. The transition temperature is determined according to the discontinuity of the rheological properties across the transition region, which agrees well with the results obtained from the small angle X-ray scattering data and the expectation of the random phase approximation theory. Maybe for the first time, microphase dissolution was investigated theologically. The storage modulus (G') and the loss modulus (G '') increase with time during the process. An entanglement fluctuation model based on the segmental density fluctuations is presented to explain the rheological behavior in this dissolution process. (C) 1997 John Wiley & Sons.
Resumo:
The structural parameters of the aggregated state of polyamide (PA)-1010 annealed at various temperatures were computed by means of the desmearing intensity from Smalt Angle X-ray Scattering (SAXS) measurements and by using the concept of the distance distribution function. The results indicated that the structural parameters of the aggregated state were strongly dependent upon heat treatment conditions and the maximum values of the structural parameters were obtained for the samples annealed at T = 175 degrees C. The particle size Z annealed at different temperature was ranged between 8.1-12.8nm, and the values of the distance distribution function P-max(Z) were obtained when Z = 4.0-6.8 nm. Using one dimension electron density correlation function (1D EDCF) method long period (L) and thickness of the lamellar (d(0)) were estimated and were found to increase with the increase of the degree of crystallinity.
Resumo:
The thermal properties of ethylene-propylene copolymer grafted with glycidyl methacrylate (EP-g-GMA) were investigated by using differential scanning calorimetry (DSC). Compared to the plain ethylene-propylene copolymer (EP), peak values of melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, crystallization temperature (T-c) increased about 8-12 degrees C, and melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal and nonisothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of ungrafted sample is 1.6-1.8, and those of grafted samples are all above 2. The crystallization rates of propylene sequence in EP-g-GMA were faster than that in the plain EP and increased with increasing of grafted monomer content. It might be attributed to the results of rapid nucleation rate. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Blends of poly(hydroxyether of phenolphthalein) (PHP) with poly(ether sulphone) (PES) were prepared by casting from a common solvent; they were found to be miscible and show a single, composition-dependent glass transition temperature. All the PHP/PES blends exhibited lower critical solution temperature behaviour, i.e. phase separation occurred at elevated temperatures. A F.T.-i.r. study revealed that a hydrogen-bonding interaction occurs between these polymers but it is weaker than in pure PHP. The observed miscibility is hence proposed to be the result of specific interactions between the polymers.
Resumo:
The phase behaviours of poly(vinyl acetate) (PVAc) and poly(styrene-co-acrylonitrile)s (SAN) with poly(epichlorohydrin) (PECH) were examined using differential scanning calorimetry and an optical method using a hot plate. The PECH/PVAc blends showed LCST behaviour. The observed miscibility is thought to be a result of hydrogen-bonding interactions between the alpha-hydrogen atoms of PECH and the carbonyl groups of PVAc. Two SAN copolymers with an acrylonitrile (AN) content of 18 wt% (SAN18) and 25 wt% (SAN25), respectively, were also found to exhibit miscibility with PECH. No phase separation occurred by heating up to about 280-degrees-C, and the individual blend has a single, composition-dependent glass transition temperature. The formation of miscible PECH/SAN blends can be considered as a result of the intramolecular repulsion between styrene and AN units in SAN.
Resumo:
A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.
Resumo:
Rhythmic growth of ring-banded spherulites in blends of liquid crystalline methoxy-poly(aryl ether ketone) (M-PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring-banded spherulites in the M-PAEK/PEEK blends is strongly dependent on the blend composition. In the M.-PAEK-rich blends, upon cooling, an unusual ring-banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M-PAEK/PEEK blend, ring-banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M-PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring-banded spherulite formation in the blends. In addition, the effects of M-PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed.
Resumo:
Crystallization and phase behavior in solution-cast thin films of crystalline syndiotactic 1,2-polybutadiene (s-1,2-PB) and isotactic polypropylene (i-PP) blends have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) techniques. Thin films of pure s-1,2-PB consist of parallel lamellae with the c-axis perpendicular to the film plane and the lateral scale in micrometer size, while those of i-PP are composed of cross-hatched and single-crystal-like lamellae. For the blends, TEM and AFM observations show that with addition of i-PP, the s-1,2-PB long lamellae become bended and i-PP itself tends to form dispersed convex regions oil a continuous s-1,2-PB phase even when i-PP is the predominant component, which indicates a strong phase separation between the two polymers during film formation. FESEM micrographs of both lower and upper surfaces of the films reveal that the s-1,2-PB lamellae pass through i-PPconvex regions from the bottom, i.e. the dispersed i-PP regions lie on the continuous s-1,2-PB phase. The structural development is attributed to an interplay of crystallization and phase separation of the blends in the film forming process.