160 resultados para Anisotropic diffusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface diffusion method was proposed and applied to prepare blue phosphor BaMgAl10O17:Eu2+. The results show that, compared with the direct synthesis method by common high temperature solid state, the concentration of Eu2+ in the phosphor BaMgAl10O17:Eu2+ prepared by the surface diffusion method can be greatly reduced owing to the activator Eu2+ ions distributed mainly over the surface of the phosphor. It is possible to reduce the cost of this kind of the luminescent materials with the aid of the surface diffusion method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heterogeneous electron transfer rate constant (k(s)) of dimethylferrocene (DMFc) was estimated using cyclic voltammetric peak potential separations taken typically in a mixed diffusion geometry regime in a polyelectrolyte, and the diffusion coefficient (D) of DMFc was obtained using a steady-state voltammogram. The heterogeneous electron transfer rate constant and diffusion coefficient are both smaller by about 100-fold in the polymeric solvent than in the monomeric solvent. The results are in agreement with the difference of longitudinal dielectric relaxation time (tau(L)) in the two kinds of solvents, poly(ethylene glycol) (PEG) and CH3CN, indicating that k(s) varies inversely with tau(L); k(s), is proportional to D of DMFc. Both D and k(s) of DMFc in PEG containing different supporting electrolytes and at different temperatures have been estimated. These results show that D and k(s) of DMFc increase with increasing temperature in the polyelectrolyte, whereas they vary only slightly with changing the supporting electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new method to estimate the diffusion coefficient and transference number of a salt or an electroactive ion in a solution with little or no supporting electrolyte. The above two parameters can be obtained from a single potential step experiment without previous knowledge of either one. It would appear that the method could also be used in the study of ion transport in a high viscosity solvent or a solid electrolyte. (C) 1998 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion coefficients (D) of quinhydrone were estimated in polymer electrolytes by using non-steady-state chronoamperometry and steady-state current voltammetry. The D values have been estimated in polyethylene glycol (PEG) containing different concentrations, and cations of supporting electrolytes, and in different solvents over a range of temperatures. The dependencies of electroactive probe diffusion coefficients on temperature, supporting electrolyte concentration and polymer chain length are discussed. The results show that D increases with increasing temperature and decreasing concentration of supporting electrolyte. The diffusion coefficient depends strongly on the length of polymer chain and decreases sharply with increasing polymer chain length. The contribution of electron self-exchange has been explored and it seems to be negligible here. (C) 1998 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion coefficients(D-app) and the heterogeneous electron-transfer rate constants(k(s)) for ferrocene in MPEG/salt electrolytes were determined by using steady-state voltammetry. The temperature dependence of the two parameters obeys the Arrhenius equation. The effect of the ionic size of six supporting electrolytes on diffusion and electron transfer dynamics of ferrocene was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion coefficients(D-app) and the heterogeneous electron transfer rate constants(k(s)) for ferrocene in several polymer solvents were determined by using steady-state voltammetry. The temperature dependence of the two parameters indicates Arrhenius behavior, The polymer solvent effects on diffusion and electron transfer dynamics of ferrocene were discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion coefficients(D-app) and the heterogeneous electron-transfer rate constants(k(s)) for ferrocene and its seven derivatives in MPEG/LiClO4 electrolyte were determined by using steady-state voltammetry. The two parameters increase with increasing temperature, indicating Arrhenius behavior. The effects of the nature of electroactive solute molecules on D-app, k(s), and the half-wave potentials(E-1/2) are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steady-state voltammograms at a microdisk electrode are used to measure the diffusion coefficient (D) and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG.MClO(4). The diffusion coefficient and standard heterogeneous rate constant of ferrocene are both smaller in polymer solvents than in monomeric solvents. The D and k(s) of ferrocene have been estimated in PEG containing different concentrations and cations of supporting electrolytes, and the dependencies of D and k(s) on temperature have been observed. These results show that the D and k(s) of ferrocene increase with increasing temperature in polyelectrolyte, and with increasing cation radius of supporting electrolyte, eg D and k(s) increase in the order Bu(4)NClO(4) > NaClO4 > LiClO4. On the other hand, D and k(s) increase with decreasing concentration of supporting electrolyte. The dependence of the half-wave potential (E(1/2)) on the concentration of the supporting electrolyte is also observed. E(1/2) shifts in the negative direction as the concentration of supporting electrolyte increases. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mass transport dynamics of Ferrocene in polyelectrolyte polyethylene glycol lithium perchlorate (PEG . LiClO4) was studied by using chronoamperometry at a microdisk electrode. Chronoamperometry is a powerful method for the study of mass transport in polyelectrolyte, it has many advantages over the conventional methods at a microelectrode and the steady-state method at an ultramicroelectrode. By using this method the apparent diffusion coefficient D-app and concentration C-a of the electroactive species, can be estimated from a single experiment without previous knowledge of either one. We have estimated D-app and C-a of ferrocene in PEG . LiClO4 polyelectrolyte from 25 degrees C to 75 degrees C. The dependence on the concentration of electroactive species was observed. The diffusion coefficients decrease with increasing ferrocene concentration and decreasing temperature. The mass transport mechanism is explained, by using a free volume model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion rates of ferrocene have been estimated in five kinds of poly(ethylene glycol) solution, containing the electrolyte LiClO4, by using non-steady-state chronoamperometry. The D-app of ferrocene increases with increasing temperature, and the dependency of D-app on temperature obeys the Williams-Landel-Ferry equation. The D-app of ferrocene decreases with increasing polymer chain length. Both the chain length and temperature dependence conform to a simple free volume model. A relation between current and polymer chain length is suggested at room and high temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion rates of seven ferrocene derivatives have been estimated in polyelectrolyte PEG . LiClO4 by using non-steady-state chronoamperometry. The D-app of ferrocene derivatives increases with temperature, and the dependency of D-app on temperature obeys the Arrhenius equation. The D-app of ferrocene derivatives decreases with increasing size of electroactive species. The Delta D-app values of D-T>Tm and D-Tdiffusion species. The dependency of D-app on the size of ferrocene at T < T-m is larger than that at T > T-m in the polyelectrolyte. On the other hand, the diffusion behaviour of ferrocene derivatives is qualitatively analyzed by using cyclic voltammetry. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a quantitative study of the diffusion rate of ferrocene(Fc) dissolved in ploy(ethylene glycol)(PEG) medium containing MClO(4)(M = Li+, Na+, Bu(4)N(+), Hx(4)N(+)). The apparent diffusion coefficient D-app and the active concentration c(a) of Fc were simultaneously measured by using non-steady-state chronoamperometry. The D-app and c(a) of Fc have been estimated in PEG containing different concentrations and sizes of supporting electrolyte, and the dependence of D-app on ferrocene concentrations has been observed. The values of D-app decrease with increasing concentrations of Fc, increasing concentrations of LiClO4 or the ratio (O:Li) and also with 4 decreasing cation radius of the electrolyte. The temperature dependencies conform to a simple free volume model. The concentration and size of the counterion dependencies of the diffusion rate are similar to the behavior of their dependencies of ionic conductivity in polyelectrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential step and cyclic voltammetric experiments in the thin layer cell were studied by the digital simulation method in this work. A relationship between the time needed for exhaustive electrolysis of the electroactive species and the thickness of the thin layer cell was obtained. On the basis of this formula, the lower time limit for a kinetic plot of the following chemical reaction can be estimated. For the cyclic voltammetry, a semiempirical formula was derived for the peak-peak potential difference (Delta Ep) in terms of the sweep rate (v), thickness of the cell (d), diffusion coefficient (D) and electron transfer number (n) 59 - n Delta Ep/n Delta Ep = 0.328(RT D/nF vd(2))(1.20).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction, based on unsteady diffusion kinetics, of the enhancement of reactivity and incorporation of 1-hexadecene in its copolymerization with propylene on adding a small amount of ethylene (increase from 5,2 mol-% to 10,8 mol-% when 2% of ethylene was added, and to 16,1 mol-% when 5% was added) was verified in the terpolymerization of propylene/1-hexadecene/ethylene on a commercial Solvay-type delta-TiCl3 catalyst. The catalyst efficiency was thus also increased. These augmentations originate from the increase in diffusion coefficient of 1-hexadecene at the catalyst surface when the PP crystallinity decreases on introduction of ethylene. Calculation based on unsteady diffusion kinetics showed that the order of diffusion coefficients ethylene > propylene > 1-hexadecene is reversed as the monomer concentration increases when the monomers are not at their equilibrium concentration. Sequence distribution as determined by means of C-13 NMR revealed a tendency of blocky structure rather than a Bernoullian one. The terpolymer compositions obtained by means of an IR method developed in this work conform rather well with the NMR results. Results in this work not only support the unsteady diffusion kinetics but also provide a new route to prepare olefinic copolymer rubbers with heterogeneous titanium catalysts.