146 resultados para Alpine meadow


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess carbon budget for shrub ecosystems on the Qinghai-Tibet Plateau, CO2 flux was measured with an open-path eddy covariance system for an alpine shrub ecosystem during growing and non-growing seasons. CO2 flux dynamics was distinct between the two seasons. During the growing season from May to September, the ecosystem exhibited net CO2 uptake from 08:00 to 19:00 (Beijing Standard Time), but net CO2 emission from 19:00 to 08:00. Maximum CO2 uptake appeared around 12:00 with values of 0.71, 1,19, 1.46 and 0.67 g CO2 m(-2) h(-1) for June, July, August and September, respectively. Diurnal fluctuation Of CO2 flux showed higher correlation with photosynthetic photon flux density than temperature. The maximum net CO2 influx occurred in August with a value of 247 g CO2 m(-2). The total CO2 uptake by the ecosystem was up to 583 g CO2 m(-2) for the growing season. During the non-growing season from January to April and from October to December, CO2 flux showed small fluctuation with the largest net CO2 efflux of 0.30 g CO2 m(-2) h(-1) in April. The diurnal CO2 flux was close to zero during most time of the day, but showed a small net CO2 eff lux from 11:00 to 18:00. Diurnal CO2 flux, is significantly correlated to diurnal temperature in the non-growing season. The maximum monthly net CO2 eff lux appeared in April, with a value of 105 g CO2 m(-2). The total net CO2 eff lux for the whole non-growing season was 356 g CO2 m(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the independent and combined effects of experimental warming and grazing on plant species diversity on the north-eastern Tibetan Plateau, a region highly vulnerable to ongoing climate and land use changes. Experimental warming caused a 26-36% decrease in species richness, a response that was generally dampened by experimental grazing. Higher species losses occurred at the drier sites where N was less available. Moreover, we observed an indirect effect of climate change on species richness as mediated by plant-plant interactions. Heat stress and warming-induced litter accumulation are potential explanations for the species' responses to experimental warming. This is the first reported experimental evidence that climate warming could cause dramatic declines in plant species diversity in high elevation ecosystems over short time frames and supports model predictions of species losses with anthropogenic climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All taxa endemic to the Qinghai-Tibet Plateau are hypothesized to have originated in situ or from immediately adjacent areas because of the relatively recent formation of the plateau since the Pliocene, followed by the large-scaled biota extinction and recession caused by the Quaternary ice sheet. However, identification of specific progenitors remains difficult for some endemics, especially some endemic genera. Nannoglottis, with about eight species endemic to this region, is one such genus. Past taxonomic treatments have suggested its relationships with four different tribes of Asteraceae. We intend to identify the closest relatives of Nannoglottis by evaluating the level of monophyly, tribal delimitation, and systematic position of the genus by using molecular data from ndhF gene, trnL-F, and ITS region sequences. We find that all sampled species of Nannoglottis are a well-defined monophyly. This supports all recent taxonomic treatments of Nannoglottis, in which all sampled species were placed in one broadly re-circumscribed genus. Nannoglottis is most closely related to the Astereae, but stands as an isolated genus as the first diverging lineage of the tribe, without close relatives. A tentative relationship was suggested for Nannoglottis and the next lineage of the tribe was based on the ITS topology, the "basal group," which consists of seven genera from the Southern Hemisphere. Such a relationship is supported by some commonly shared plesiomorphic morphological characters. Despite the very early divergence of Nannoglottis in the Astereae, the tribe must be regarded to have its origin in Southern Hemisphere rather than in Asia, because based on all morphological, molecular, biogeographical, and fossil data, the Asteraceae and its major lineages (tribes) are supposed to have originated in the former area. Long-distance dispersal using Southeast Asia as a steppingstone from Southern Hemisphere to the Qinghai-Tibet Plateau is the most likely explanation for this unusual biogeographic link of Nannoglottis. The 23-32-million-year divergence time between Nannoglottis and the other Astereae estimated by DNA sequences predated the formation of the plateau. This estimation is further favored by the fossil record of the Asteraceae and the possible time of origin of the Astereae. Nannoglottis seems to have reached the Qinghai-Tibet area in the Oligocene-Eocene and then re-diversified with the uplift of the plateau. The molecular infragenetic phylogeny of the genus identifies two distinct clades, which reject the earlier infrageneric classification based on the arrangement of the involucral bracts and the length of the ligules, but agree well with the habits and ecological preferences of its current species. The "alpine shrub" vs. "coniferous forest" divergence within Nannoglottis was estimated at about 3.4 million years ago when the plateau began its first large-scale uplifting and the coniferous vegetation began to appear. Most of the current species at the "coniferous forest" clade of the genus are estimated to have originated from 1.02 to 1.94 million years ago, when the second and third uprisings of the plateau occurred, the climate oscillated and the habitats were strongly changed. The assumed evolution, speciation diversity, and radiation of Nannoglottis based on molecular phylogeny and divergence times agree well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presumed pair relationships of intercontinental vicariad species in the Podophyllum group (Sinopodophyllum hexandrum vs. Podophyllum pelatum and Diphylleia grayi vs. D. cymosa) were recently, considered to be paraphyletic. In the present paper, the trnL-F and ITS gene sequences of the representatives were used to examine the sister relationships of these two vicariad species. A heuristic parsimony analysis based on the trnLF data identified Diphylleia as the basal clade of the other three genera, but provided poor resolution of their inter-relationships. High sequence divergence was found in the ITS data. ITS1 region, more variable but parsimonyuninformative. has no phylogenetic value, Sequence divergence of the ITS2 region provided abundant, phylogenetically informative variable characters. Analysis of ITS2 sequences confirmeda sister relationship between the presumable vicariad species, in spite of a low bootstrap support for Sinopodophyllum hexandrum vs. Podophyllum pelatum. The combined ITS2 and trnL-F data enforced a sister relationship between Sinopodophyllum hexandrum and Podophyllum pelatum with an elevated bootstrap support of 100%. Based on molecular phylogeny, the morphological evolution of this group was discussed. The self-pollination might have evolved from cross-fertilization two times in this group. The different pollination and seed dispersal systems of Sinopodophyllum hexandrum and Podophlyllum pelatum resulted from their adaptations to different ecological habitats. The divergence time of Sinopodophyllum hexandrum-Podophyllum pelatum is estimated to be 6.52+/-1.89 myr based on the ITS divergence. The divergence of this species pair predated or co-occurred with the recent uplift of the Himalayas 4-3 myr during the late Miocene and the formation of the alpine habitats. Sinopodophyllum hexandrum developed a host of specialized characters in its subsequent adaptation to the arid alpine surroundings. The present study confirmed the different patterns of species relationship between Asian-North American disjuncts. The isolation of plant elements between North America and eastern Asia must have been a gradual process, resulting in the different phylogenetic patterns and divergence times of the disjuncts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benefits and costs of dispersal and philopatry of the social plateau pika (Ochotona curzoniae) were studied on the Tibetan plateau for 3 years. Although short-lived, plateau pikas live in cohesive family groups that occupy burrow systems in sedge meadow habitat Most (57.8%) plateau pikas were philopatric, and dispersal movements were extremely restricted. No juvenile females or adult pikas moved more than two family ranges between years; the greatest observed dispersal distances were by two juvenile males that moved five family ranges from the family of their birth. Traversing unfamiliar habitat was not a cost of pika dispersal because most dispersers settled in families that they could easily visit before dispersal. Dispersal movements appeared to result in equalization of density among pika families, an expected result if competition for environmental resources influenced dispersal. Males did not disperse to gain advantages in competition for mates, as evidenced by their moving to families with significantly fewer females. Females, however, moved to families with significantly more males. Males provide abundant paternal care, and significantly more offspring per female survived to become adults from families with more adult males per adult female. Evidence concerning the influence of inbreeding avoidance on natal dispersal was indirect. Some males exhibited natal philopatry; thus some families had opportunity for close inbreeding. Males and females that dispersed had no opposite-sex relatives in their new families. Philopatric pikas may have benefited by remaining in families that exhibited low local densities, and philopatric females might have benefited from social cooperation with relatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文以青藏高原东北部海北地区高寒灌丛(Alpine Shrub)生态系统为研究对象,利用微气象观测系统及涡度相关(Eddy Covariance)技术,自2003年1月1日至2005年12月31日对该类广布于青藏高原的典型高寒草地类型进行长期连续观测。在对生态系统CO2净交换(NEE)以及群落叶面积指数(LAI)、生物量等生物学指标和光合有效辐射(PAR)、温度、土壤水分、脉冲性降水事件等主要环境因子进行连续监测的基础上,重点分析和探讨了海北地区高寒灌丛生态系统净生态系统CO2交换(NEE)在时、日、月及年际尺度上的变化模式,生长季与非生长季高寒灌丛生态系统CO2净交换特征,高寒灌丛生态系统大气CO2源/汇年际差异,土壤温度、昼夜温差、光合有效辐射、脉冲性降水事件等主要环境因子影响。从而,揭示了不同时间尺度下的高寒灌丛生态系统NEE变化规律,阐明主要环境因子对生态系统NEE的影响,明确了该生态系统大气CO2源/汇状况及其季节分布模式;同时,也为青藏高原区域尺度的高寒草地生态系统CO2通量研究和碳收支的估算提供科学依据和基础数据,对进一步揭示我国乃至亚洲陆地生态系统的碳收支状况有着重要意义。主要研究结果概括为以下几个方面: 1、海北地区高寒灌丛生态系统净生态系统CO2交换时动态特征存在很大的季节性差异,暖季小时NEE变化振幅大,CO2净吸收的极值一般出现在午间,最大吸收量为1.7 g CO2 m-2 h-1左右。夜间为CO2净释放,净生态系统交换值较为稳定(0.5~ 0.9 g CO2 m-2 h-1);冷季日变化振幅极小,除14:00~18:00时一定量CO2释放外,其余时段通量均很小。 2、从日平均净生态系统CO2交换来看,6~9月日平均NEE一般为负值(CO2净吸收),2003~2005年6~9 月间日平均NEE分别为-5.65 g CO2 m-2 d-1、-6.08 g CO2 m-2 d-1和-4.81 g CO2 m-2 d-1;而10~12月及翌年1~5月期间日平均NEE通常为正值(CO2净释放),该时段3年高寒灌丛日平均净生态系统CO2交换分别为1.91 g CO2 m-2 d-1、1.90 g CO2 m-2 d-1和2.19 g CO2 m-2 d-1。2003~2004年高寒灌丛生态系统CO2净释放维持天数分别为249 d、 254 d和264 d,2003年净释放维持天数最少,而净吸收维持天数2005年最少(101d)。2003、2004和2005年全年日平均CO2净吸收分别为0.611 g CO2 m-2 d-1、0.759 g CO2 m-2 d-1和0.167 g CO2 m-2 d-1。 3、就季节差异而言,2003、2004和2005年整个生长季节高寒灌丛平均CO2日净生态系统交换分别为-3.99 g CO2 m-2 d-1、-4.59 g CO2 m-2 d-1、-3.27 g CO2 m-2 d-1。7、8月生长季节CO2净吸收的最高,2003、2004、2005年7月和8月份高寒灌丛生态系统CO2净吸收分别为222 g CO2 m-2 和224 g CO2 m-2、355 g CO2 m-2和216 g CO2 m-2、263 g CO2 m-2和186 g CO2 m-2。在相对短暂的生长季节海北地区高寒灌丛生态系统表现出显著的大气CO2净吸收能力,2003、2004和2005年生长季节高寒灌丛生态系统CO2净吸收量分别为610 g CO2 m-2、701 g CO2 m-2和500 g CO2 m-2。相对于温度等环境因子,高寒灌丛生态系统生长季白昼NEE小时变化规律更受光合有效辐射变化的影响。 4、2003~2005年非生长季节日平均NEE分别为1.83 g CO2 m-2、2.01 g CO2 m-2和2.07 g CO2 m-2。4月和10月是非生长季节CO2净释放的最高月份,2003、2004和2005年全月净释放量为105 g CO2 m-2和77 g CO2 m-2、105 g CO2 m-2和117 g CO2 m-2及105 g CO2 m-2和138 g CO2 m-2,2003~2005年整个非生长季CO2净释放分别为CO2为388 g CO2 m-2、425 g CO2 m-2和439 g CO2 m-2。非生长季节海北地区高寒灌丛生态系统NEE小时变化与5 cm土壤温度存在极显著的正相关关联,表明在非生长季节土壤温度是影响青藏高原高寒灌丛生态系统NEE的重要环境因子。 5、从生态系统CO2源/汇特征来看,海北地区高寒灌丛生态系统2003、2004和2005年全年净CO2固定总量分别为223 g CO2 m-2 a-1、277 g CO2 m-2 a-1和61 g CO2 m-2 a-1,3年平均CO2值为187 g CO2 m-2 a-1。在为期3年的研究时段海北地区高寒灌丛生态系统表现为弱的大气二氧化碳的汇。 6、高寒灌丛群落表观光合量子产额(a)和表观最大光合速率(Pmax)受叶面积指数的影响。在6~9月份期间,由于LAI的不同,a和Pmax值差异明显,7、8月份较高而6月和9月明显较低。海北地区高寒灌丛生态系统a和Pmax值高于西藏当雄地区高寒草甸生态系统,但低于平原地区相关生态系统。 维持天数2005年最少(101d)。2003、2004和2005年全年日平均CO2净吸收分别为0.611 g CO2 m-2 d-1、0.759 g CO2 m-2 d-1和0.167 g CO2 m-2 d-1。 3、就季节差异而言,2003、2004和2005年整个生长季节高寒灌丛平均CO2日净生态系统交换分别为-3.99 g CO2 m-2 d-1、-4.59 g CO2 m-2 d-1、-3.27 g CO2 m-2 d-1。7、8月生长季节CO2净吸收的最高,2003、2004、2005年7月和8月份高寒灌丛生态系统CO2净吸收分别为222 g CO2 m-2 和224 g CO2 m-2、355 g CO2 m-2和216 g CO2 m-2、263 g CO2 m-2和186 g CO2 m-2。在相对短暂的生长季节海北地区高寒灌丛生态系统表现出显著的大气CO2净吸收能力,2003、2004和2005年生长季节高寒灌丛生态系统CO2净吸收量分别为610 g CO2 m-2、701 g CO2 m-2和500 g CO2 m-2。相对于温度等环境因子,高寒灌丛生态系统生长季白昼NEE小时变化规律更受光合有效辐射变化的影响。 4、2003~2005年非生长季节日平均NEE分别为1.83 g CO2 m-2、2.01 g CO2 m-2和2.07 g CO2 m-2。4月和10月是非生长季节CO2净释放的最高月份,2003、2004和2005年全月净释放量为105 g CO2 m-2和77 g CO2 m-2、105 g CO2 m-2和117 g CO2 m-2及105 g CO2 m-2和138 g CO2 m-2,2003~2005年整个非生长季CO2净释放分别为CO2为388 g CO2 m-2、425 g CO2 m-2和439 g CO2 m-2。非生长季节海北地区高寒灌丛生态系统NEE小时变化与5 cm土壤温度存在极显著的正相关关联,表明在非生长季节土壤温度是影响青藏高原高寒灌丛生态系统NEE的重要环境因子。 5、从生态系统CO2源/汇特征来看,海北地区高寒灌丛生态系统2003、2004和2005年全年净CO2固定总量分别为223 g CO2 m-2 a-1、277 g CO2 m-2 a-1和61 g CO2 m-2 a-1,3年平均CO2值为187 g CO2 m-2 a-1。在为期3年的研究时段海北地区高寒灌丛生态系统表现为弱的大气二氧化碳的汇。 6、高寒灌丛群落表观光合量子产额(a)和表观最大光合速率(Pmax)受叶面积指数的影响。在6~9月份期间,由于LAI的不同,a和Pmax值差异明显,7、8月份较高而6月和9月明显较低。海北地区高寒灌丛生态系统a和Pmax值高于西藏当雄地区高寒草甸生态系统,但低于平原地区相关生态系统。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Otindag sandy land and the Guyuan region of Hebei Province lie in the agro-pastoral zone, where sandy desertification is serious. So they are typical for us to study on. In this paper, detail investigation were made on the Remote Sensing, Hydrochemistry, Chronology, grain size analyzing of research region to monitor sandy desertification and environmental background. The main conclusions are presented as following: 1. According to the diverse natural condition, the research area is divided into three types as sandy land desertification, cultivated land desertification and desertification reflected by lake change. The monitoring result of the first type shows that the main performance way of the sandy desertification in Otindag sandy land is that (1) the expansion of both the shifting dune and the half fixed sandy dune, (2) the reduce of the fixed sandy dune. While the result of the second type shows (1) the desertification land in the Guyuan region has first increasing then reducing change for about 30 years. (2) The sand mainly concentrates west of the research area and small part of wind-drift sand distributes northeast the research area with the spot shape. (3) The meadow area increases obviously. As far as the third type, the Dalai Nur lake area occurs first expanding then reducing change and the wind-drift sand around the lake first reduces then increases. 2. The land cover of the different types change with the same law. It is worth notice that the lake area changes oppositely with that of the wind-drift sand. 3. For about 5,000 a B.P. -2800 a B.P., the well developed palaeosols emerged. After that, three layer palaeosols were founded in the profile of Otindag sandy land. The analyses of grain size show that the sand grains of the south were coarser than that of the north. The sand in the north and middle were well sorted, while the south poor sorted. 4. Both the natural and human impact on the process of sandy desertification. On this research result, different regions have different influences. So the measures to improve sandy desertification should be choosed respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relationship between biology and environment is always the theme of ecology. Transect is becoming one of the important methods in studies on relationship between global change and terrestrial ecosystems, especially for analysis of its driving factors. Inner Mongolia Grassland is the most important in China Grassland Transect brought forward by Yu GR. In this study, changes in grassland community biomass along gradients of weather conditions in Inner Mongolia was researched by the method of transect. Methods of regression about biomass were also compared. The transect was set from Eerguna county to Alashan county (38° 07' 35" ~50° 12' 20" N, 101° 55' 25" -120° 20' 46" E) in Inner Mongolia, China. The sample sites were mainly chosen along the gradient of grassland type, meadow steppe-* typical steppe-*desert steppe-*steppification desert-^desert. The study was carried out when grassland community biomass got the peak in August or September, 2003 and 2004. And data of 49 sample sites was gotten, which included biomass, mean annual temperature, annual precipitation, accumulated temperature above zero, annual hours of sunshine and other statistical and descriptive data. The aboveground biomass was harvested, and the belowground biomass was obtained by coring (30 cm deep). Then all the biomass samples were dried within (80 + 5) °C in oven and weighted. The conclusion is as follows: 1) From the northeast to the southwest in Inner Mongolia, along the gradient of grassland type, meadow steppe-*typical steppe-*desert steppe-*steppification desert-* desert, the cover degree of vegetation community reduces. 2) By unitary regression analysis, biomass is negatively correlated with mean annual temperature, s^CTC accumulated temperature, ^10°C accumulated temperature and annual hours of sunshine, among which mean annual temperature is crucial, and positively with mean annual precipitation and mean annual relative humidity, and the correlation coefficient between biomass and mean annual relative humidity is higher. Altitude doesn't act on it evidently. Result of multiple regression analysis indicates that as the primary restrictive factor, precipitation affects biomass through complicated way on large scale, and its impaction is certainly important. Along the gradient of grassland type, total biomass reduces. The proportion of aboveground biomass to total biomass reduces and then increases after desert steppe. The trend of below ground biomass's proportion to total biomass is adverse to that of aboveground biomass. 3) Precipitation is not always the only driving factor along the transect for below-/aboveground biomass ratio of different vegetation type composed by different species, and distribution of temperature and precipitation is more important, which is much different among climatic regions, so that the trend of below-/aboveground biomass ratio along the grassland transect may change much through the circumscription of semiarid region and arid region. 4) Among reproductive allocation of aboveground biomass, only the proportion of stem in total biomass notably correlates to the given parameters. Stem/leaf biomass ratio decreases when longitude and latitude increase, caloric variables decrease, and variables about water increase from desert to meadow steppe. The change trends are good modeled by logarithm or binomial equations. 5) 0'-10 cm belowground biomass highly correlates to environmental parameters, whose proportion to total biomass changes most distinctly and increases along the gradient from the west to the east. The deeper belowground biomass responses to the environmental change on the adverse trend but not so sensitively as the surface layer. Because the change value of 0~10 cm belowground biomass is always more than that of below 10 cm along the gradient, the deference between them is balanced by aboveground biomass's change by the resource allocation equilibrium hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to realize fast development of the national economy in a healthy way and coordinate progress with whole society, the country has implemented the strategy of development of the western region. An important action of finishing this strategic task is to accelerate the highway construction in the western region, join the western region and places along the coast, the river, the border with goods and materials, technology, and personnel interchanges, and then drive development of the local economy.The western region was influenced by the Himalaya Tectonization in Cenozoic, and the crust rose and became the plateau. In the course of rising, rivers cut down sharply to form a lot of high mountains and gorges.Because of topography and geomorphology, bridges in the traffic construction in the alpine gorge area are needed. Rivers have characteristics of large flow, fast velocity and high and steep river valley, so building a pier in the river is not only very difficult, but also making the cost increase. At the same time, the impact that the pier is corroded and the bridge base that is drawn to be empty by flow are apt to cause destruction of the pier. For those reasons, suspending bridge and cable-stay bridge are usually adopted with the single and large span. For the large span bridge, the pier foundation could receive ten thousand and more vertical strength, bending moment and near kiloton horizontal thrust.Because bank slope in the alpine gorge district is cut deeply and unsettled big, natural stability is worse under endogenic and exogenic force. When bank slope bears heavy vertical strength, bending moment and horizontal thrust facing the river, it will inevitably make the balance state of rock and soil mass change, bridge bank slope deform, and even destroyed. So the key problem at the time of the large span's bridge construction in the alpine gorge area is how to make it stable.So based on the spot investigation, the Engineering Geology Analysis Method is very important to grasp the bank slope stability. It can provide the bank slope stability macroscopic ally and qualitatively, and reference to the indoor calculation. The Engineering Geology Analysis Method is that by way of analyzing and investigating terms of bank slope instability, stability development trend, the ancient rock slide and devolution in the site, stability comprehensive evaluation primarily, current and future stability of bank slope is gotten, realizing the intention to serving the concrete engineering.After the Engineering Geology Analysis Method is applied to project instances of BeiPan River Bridge and BaLin River Bridge, results are accord with bank slope actual conditions, which proves sites are suited to building bridges from site stability.we often meet bank slope stability issues in the traffic construction in the alpine gorge areao Before the evaluation of the bank slope stability, the engineering geological condition is investigated first. After that, the next exploration target and geology measures are decided. So, the Engineering Geology Analysis Method that the investigation of the engineering geological condition is the main content is quite important in practice. The other evaluations of the bank slope stability are based on it. Because foundation receives very heavy load, for the big span's bridge in the alpine gorge area, a long pile of the large diameter (D^0.8m) is usually selected. In order to reflect rock mass's deformation properties under rock-socketed pile function, the author has used the FLAG30 software for rock and soil mass and done many numerical simulations. By them, the author launches the further investigation on deformation properties of bank slope under different slope angle, pile length, diameter, elastic modulus, load, bank slope's structure, etc. Some conclusion meaningful to the design and produce are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The platinum-group elements (PGE), including Os, Ir, Ru, Rh, Pt and Pd, axe strongly siderophile and chalcophile. On the basis of melting temperature, the PGE may be divided into two groups: the Ir group (IPGE, >2000°C) consisting of Os, Ir and Ru, and the Pd group (PPGE, <20GO°C) consisting of Rh, Pt and Pd. Because of their unique geochemical properties, PGE provide critical information on global-scale differentiation processes, such as core-mantle segregation, late accretionary history, and core-mantle exchange. In addition, they may be used to identify magma source regions and unravel complex petrogenetic processes including partial melting, melt percolation and metasomatism in the mantle, magma mixing and crustal contamination in magma chambers and melt crystallization.Compared with other rocks, (ultra)mafic rocks have lower REE content but higher PGE content, so PGE have advantages in studying the petrogeneses and evolution of them. In this study, we selected (ultra)mafic rocks collected in Dabie Orogen and volcanic rocks from Fuxin Region. Based on the distribution and behaviour of platinum-group elements, combined with other elements, we speculate the magma evolution and source mantle of these (ultra)mafic rocks and volcanic rocks.Many (ultra)mafic rocks are widely distributed in Dabie Region. According to their deformation and metamorphism, we classed them into three types. One is intrusive (ultra)mafic rocks, which are generally undeformed and show no or little sign of metamorphism, such as (ultra)mafic intrusions in Shacun, zhujiapu, Banzhufan, qingshan, Xiaohekou, Jiaoziyan, Renjiawan and Daoshichong. The other one is ultrahigh pressure metamorphic (ultra)mafic rocks, some of them appeared as eelogites, such as complex in Bixiling and adjacent Maowu. Another one is intense deformed and metamorphic, termed as tectonic slice, alpine-type (ultra)mafic rocks. The most representative is Raobazhai and Dahuapin. However, there are many controversies about the formation of those (ultra)mafic rocks. Here, we select typical rocks of the three types. The PGE were determined by inductively coupled plasma mass spectrometry (ICP-MS) ater NiS fire-assay and tellurium co-precipitation.The PGE tracing shows that three components are needed in the source of the cretaceous (uitra)mafic intrusions. They could be old enriched sub-continental lithospheric mantle, lower crust and depleted asthenospheric mantle. The pattern of PGE also shows the primitive magma of these intrusions underwent S saturation. According to palladium, we can conclude that the mantle enrich in PGE. Distribution of PGE in Bixiiing and Maowu (ultra)mafic rocks display they are products of magmas fractional crystallization. The (ultra)mafic rocks in Bixiiing and Maowu are controlled by various magmatic processes and the source mantle is depleted in PGE. Of interest is that the mantle produced UHP (ultra)mafic rocks are PGE-depleted, whereas the mantle of cretaceous (ultra)mafic intrusions are enrich in PGE. This couldindicate that the mantle change from PGE-enriched to PGE-depleted during120-OOMa, which in accord with the time of tectonic system change in the East China. At the same time, (ultra)mafic intrusions in cretaceous took information of deep mantle, which means the processes in deep mantle arose structural movement in the crust The character of PGE in alpine-type (ultra)mafic rocks declared that the rocks had experienced two types of metasomatic processes - hydrous melt derived from slab and silicate melt. In addition, we analyze the platinum-group elements in volcanic rocks on the northern margin of the North China Craton, Fuxin. The volcanic rocks characterized by negative anomalies of platinum. This indicates that platinum alloys, which may host some Pt resided in the mantle. The PGE patterns also show that Jianguo alkali basalts derived from asthenospheric mantle source, but wulahada high-Mg andesites derived from lithospheric mantle.