163 resultados para Algal biofuels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The toxicity of seven major HAB (harmful algal bloom) species/strains, Prorocentrum donghaiense, Phaeocystis globosa, Prorocentrum micans, Alexandrium tamarense (AT-6, non-PSP producer), Alexandrium lusitanicum, Alexandrum tamarense (ATHK) and Heterosigma akashiwo were studied against rotifer Brachionus plicatilis under laboratory conditions. The results show that P. donghaiense, P. globosa, P. micans, A. tamarense (AT-6), or A. lusitanicum could maintain the individual survival and reproduction, as well as the population increase of the rotifer, but the individual reproduction would decrease when exposed to these five algae at higher densities for nine days; H. akashiwo could decrease the individual survival and reproduction, as well as population increase of the rotifer, which is similar to that of the starvation group, indicating that starvation might be its one lethal factor except for the algal toxins; A. tamarense (ATHK) has strong lethal effect on the rotifer with 48h LC50 at 800 cells/mL. The experiment on ingestion ability indicated by gut pigment change shows that P. donghaiense, P. globosa, P. micans, A. tamarense (AT-6) and A. lusitanicum can be taken by the rotifers as food, but A. tamarense (ATHK) or H. akashiwo can be ingested by the rotifers. The results indicate that all the indexes of individual survival and reproduction, population increase, gut pigment change of the rotifers are good and convenient to be used to reflect the toxicities of HAB species. Therefore, rotifer is suggested as one of the toxicity testing organisms in detecting the toxicity of harmful algae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Ex(max)/Em(max) = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm(Peak S)and 280/320 nm(Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A) and 330-350/420-480 nm(Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of then-L Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between Alexandrium tamarense (Lebour) Balech, one of red-tide alga, and two strains of marine bacteria, Bacillius megaterium(S-7) and B. halmapulus(S-10) isolated from Xiamen Western Sea, was investigated by evaluating the growth state of A. tamarense and the variation of P-glucosidase activity in co-culture system. The results showed the growth and multiplication of the alga were related with the concentration, genus speciality of the bacteria, and growth stage of the alga itself. The growth of A. tamarense was obviously inhibited by S7 and S, at high concentration. Either inhibition or promotion contributed much more clearly in earlier than in later stage of the growth of the alga. Furthermore, there was a roughly similar variation trend of the activity of extra-cellular enzyme, beta-glucosidase, in the water of the separately co-cultured bacteria S-7 and S-10 with the alga. The beta-glucosidase activity (beta-GlcA) rapidly increased during the later algal growth accompanying the increase of the lysis of the alga cells. The obvious inhibition of A. tamarense by marine bacteria at high concentration and evident increase of beta-GlcA in co-colture system would help us in better understanding the relationship between red-tide alga and bacteria, and also enlightened us the possible use of bacteria in the bio-control of red-tide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate harmful effects of the dinoflagellate Alexandrium species on microzooplankton, the rotifer Brachionus plicatilis was chosen as an assay species, and tested with 10 strains of Alexandrium including one known non-PSP-producer (Alexandrium tamarense, AT-6). HPLC analysis confirmed the PSP-content of the various strains: Alexandrium lusitanicum, Alexandrium minutum and Alexandrium tamarense (ATHK, AT5-1, AT5-3, ATC102, ATC103) used in the experiment were PSP-producers. No PSP toxins were detected in the strains Alexandrium sp1, Alexandrium sp2. Exposing rotifer populations to the densities of 2000 cells ml(-1) of each of these 10 Alexandrium strains revealed that the (non-PSP) A. tarnarense (AT-6) and two other PSP-producing algae: A. lusitanicum, A. minutum, did not appear to adversely impact rotifer populations. Rotifers exposed to these three strains were able to maintain their population numbers, and in some cases, increase them. Although some increases in rotifer population growth following exposures to these three algal species were noted, the rate was less than for the non-exposed control rotifer groups. In contrast, the remaining seven algal strains (A. tamarense ATHK, AT5-1, AT5-3, ATC102, ATC103; also Alexandrium sp1 and Alexandrium sp2) all have adverse effects on the rotifers. Dosing rotifers with respective algal cell densities of 2000 cells ml-1 each, for Alexandrium spl, Alexandrium sp2, and A. tamarense strains ATHK and ATC103 showed mean lethal time (LT50) on rotifer populations of 21, 28, 29, and 36h, respectively. The remaining three species (A. tamarense strains AT5-1, AT5-3, ATC102) caused respective mean rotifer LT50S of 56, 56, and 71 h, compared to 160 h for the unexposed "starved control" rotifers. Experiments to determine ingestion rates for the rotifers, based on changes in their Chlorophyll a content, showed that the rotifers could feed on A. lusitanicum, A. minutum and A. tamarense strain AT-6, but could graze to little or no extent upon algal cells of the other seven strains. The effects on rotifers exposed to different cell densities, fractions, and growth phases of A. tamarense algal culture were respectively compared. It was found that only the whole algal cells had lethal effects, with strongest impact being shown by the early exponential growth phase of A. tamarense. The results indicate that some toxic mechanism(s), other than PSP and present in whole algal cells, might be responsible for the adverse effects on the exposed rotifers. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recovery and fate of three species of dinoflagellates, Alexandrium tamarense, Cochlodinium polykrikoides and Scrippsiella trochoidea, after having been sedimented by yellow clay, were investigated in the laboratory. The effect of burying period in yellow clay pellet and mixing on the recovery of settled algal cells were studied. The morphological changes of algal cells in yellow clay pellet were also tracked. Results showed that there was almost no recovery for A. tamarense and C. polykrikoides, and the cells decomposed after 2-3 days after visible changes in morphology and chloroplasts. There was some recovery for S. trochoidea. Moreover, S. trochoidea cysts were formed in clay pellet during the period of about 14 days, with the highest abundance of 87 000 cysts g(-1) clay and the incidence of cyst formation of 6.5%, which was considered as a potential threat for the further occurrence of algal blooms. S. trochoidea cysts were isolated from yellow clay and incubated to test their viability, and a germination ratio of more than 30% was obtained after incubation for 1 month. These results showed the species specificity of the mitigation effect of yellow clay. It is suggested that cautions be taken for some harmful species and thorough risk assessments be conducted before using this mitigation strategy in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is excess nitrate (NO3) in the Pearl River coastal plume in the southern waters of Hong Kong in summer. We hypothesize that phosphorus (P) limitation controls the utilization of excess NO3 due to the high N:P ratio in the Pearl River. To test this hypothesis, we conducted two 1-day cruises on July 13 and 19, 2000 to examine the response of the phytoplankton to P additions with respect to changes in biomass, uptake of nutrients and nutrient uptake ratios using a batch incubation of natural water samples collected from the Pearl River estuary and adjacent coastal waters. At a station (E1, salinity =5) in the Pearl River estuary, the N/P ratio at the surface was 46:1, (64 muM DIN: 1.3 muM PO4) and decreased to 24:1 (12 muM DIN: 0.5 muM PO4) downstream at a station (Stn 26, salinity =26) in the coastal plume south of Hong Kong. Without a P addition, NO3 in the water samples collected at E1 could not be depleted during a 9 day incubation (similar to20 muM NO3 remaining). With a P addition, NO3 disappeared completely on day 6 with the depletion of the added PO4 (2-3 muM). This was also true for a station, E4 (salinity= 15) further downstream, but within the estuary. At Stn 26, in the coastal plume south of Hong Kong, NO3 (similar to11.5 muM) was eventually depleted without the addition of PO4, but it took 8 days instead of 5 days for Stn E4. The uptake ratio of dissolved inorganic nitrogen (DIN) to PO4, without a P addition was 51:1, 43:1 and 46:1 for Stns E1, E4 and 26, respectively. With a P addition, the DIN/PO4 uptake ratio decreased to 20:1, 14:1 and 12:1, respectively, for the 3 stations. These results clearly indicate potential P limitation to utilization of NO3 in the Pearl River estuary, resulting in excess NO3 in waters of the coastal plume downstream of the estuary, some of which would eventually be transported offshore. High uptake ratios of N:P without a P addition (43N:1P) suggest that phytoplankton have a nitrogen uptake capacity in excess of the Redfield ratio of 16N: 1P by 2.5-3 times. The value of 2.5-3 times was likely a maximum that should have contained a contribution of P released from desorption of P from sediments or from regeneration by zooplankton grazing and bacterial activity during the incubation of natural water samples. Without a P addition, however, phytoplankton biomass did not increase. This means that P turnover rates or regeneration may allow phytoplankton to take up additional N in excess of the Redfield ratio and store it, but without increasing the algal biomass. Therefore, high ambient N:P ratios in excess of the Redfield ratio do indicate potential P limitation to phytoplankton biomass in this estuarine coastal ecosystem. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of Alexandrium tamarense (strain ATHK) on early development of the bay scallop Argopecten irradians concentricus were studied under laboratory conditions. The algal culture was verified by HPLC to produce paralytic shellfish poisoning (PSP) at a level of 37.48 fmol/cell. Survival of the scallop larvae was not affected when they were grown with A. tamarense at concentrations of 500-10,000 cells/ml for 48 h. However, the activity of D-shape larvae was inhibited after 48-h exposure to A. tamarense at the algal cell density of 10,000 cells/ml. Scallop growth was inhibited significantly by A. tantarense during a 14-day exposure starting at the eye-spot larval stage. The size of juvenile scallops in the group of 10,000 cells/ml was only about 32% of that of the controls, although no obvious effect of A. tamarense was found on the rate of larval metamorphosis. All juvenile scallops survived in algal concentrations of 600-2400 cells/ml, however, attachment rates were significantly lower than control values after a 5-h exposure to A. tamarense at concentrations >600 cells/ml, while they were not obviously reduced after only 1 h of exposure. At concentrations >600 cells/ml, the climbing ability of juveniles was clearly reduced by exposure to A. tamarense after only 1 h. The climbing rate and height were only 55% and 45%, respectively, of those of the controls, when exposed to A. tantarense at a concentration of 600 cells/ml. The results indicated that A. tamarense blooms may have detrimental impacts on shellfish at early life stages, therefore, special attention should be paid to the toxic algal blooms in shellfish breeding area. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of a PSP producing dinoflagellate Alexandrium tamarense on marine bivalves at their several important life,stages: egg, D - shape larva, eyespot larva, juvenile and adult, were studied! The results show that the hitching survival, activity, filtration and! growth were adversely affected by the alga and the impact was significantly increased with the increase of algal density. The inhibitory effect on egg hatching was most significant, which the hatching rate was only 30% of the control when exposed to the alga at 100 cell/cm(3) after 36 h. Further experiments show that the algal culture, re-suspended cells and cell fragments had the inhibitory effect, while no such effect was from the cell-free medium, cell contents and standard STX. The results indicate that the alga could produce unknown toxins, rather than PSP, associated with the cell surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an apparently novel toxic effect of the dinoflagellate Alexandrium tamarense, manifested by inhibition of the egg hatching success of the scallop, Chlamys farreri. The hatching rate of C. farreri approached only 30% of controls when its fertilised eggs were exposed for 36 h to A. tamarense cells or cellular fragments at a concentration of 100 cells/ml, and the hatching rate was just 5% after exposure to A. tamarense of 500 cells/ml. Similar exposures of the fertilised scallop eggs to two other algal species, the diatom Phaeodactylum tricornutum and the raphidophyte Heterosigma carterae, resulted in no such toxicity or inhibitory effects.. Likewise, exposure of eggs to standard STX toxin. as well as to A. tamarense cell contents (supernant of re-suspended algal cells following ultrasonication and centrifugation), did not elicit this inhibitory response. However, exposure of the scallop eggs to cell cultures, intact algal cells, or cell fragments of A. tamarense produced marked toxicity. The alga also influenced larvae at early D-shape stage of scallop. The survival rates began to decrease significantly after exposed for 6 days at concentration of 3000 cells/ml and above: no larvae could survive after 14-day exposure to A. tamarense at 10,000 cells/ml or 20-day at 5000 cells/ml. The results indicated the production of novel substances from A. tamarense which can cause adverse effects on egg hatching and survival of the scallop larvae, The experiment also found that the developmental stages before blastula was the developmental period most sensitive to the A. tamarense toxin(s) and the alga at early exponential stage had the strongest effect on egg hatching comparing with other growth phases. The adverse effect of A. tamarense on early development of scallops may cause decline of shellfish population and may have further impact on marine ecosystem. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotopes of N provide a new approach to the study of algal production in the ocean, yet knowledge of the isotope fractionation (epsilon) in various oceanic regimes is lacking. Here we report large and rapid changes in isotope composition (delta(15)N) of 2 coastal diatoms and 2 clones (open and coastal) of a coccolithophore grown in the simultaneous presence of nitrate, ammonium and urea under varying conditions of N availability (i.e. N-sufficiency and N-starvation followed by N-resupply) and hence different physiological states, During N-sufficiency, the delta(15)N of particulate organic N (PON) was well reproduced, using a model derived from Rayleigh distillation theory, with constant epsilon similar to that for growth on each individual N source. However, following N-resupply, the variations in delta(15)N(PON) could be well explained only in the case of the open ocean Emiliania huxleyi, with epsilon similar to N-sufficient conditions. It was concluded that the mechanism of isotope fractionation changed rapidly with N availability for the 3 coastal clones. However, in the case of E. huxleyi isolated from the Subarctic Pacific Ocean, no evidence of a change in mechanism was found, suggesting that perhaps open ocean species can quickly recover from N-depleted conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very little is known about how global anthropogenic changes will affect major harmful algal bloom groups. Shifts in the growth and physiology of HAB species like the raphidophyte Heterosigma akashiwo and the dinoflagellate Prorocentrum minimum due to rising CO2 and temperature could alter their relative abundance and environmental impacts in estuaries where both form blooms, such as the Delaware Inland Bays (DIB). We grew semi-continuous cultures of sympatric DIB isolates of these two species under four conditions: (1) 20 degrees C and 375 ppm CO2 (ambient control), (2)20 degrees C and 750 ppm CO2 (high CO2),(3) 24 degrees C and 375 ppm CO2 (high temperature), and (4) 24 degrees C and 750 ppm CO2 (combined). Elevated CO2 alone or in concert with temperature stimulated Heterosigma growth, but had no significant effect on Prorocentrum growth. P-Bmax (the maximum biomass-normalized light-saturated carbon fixation rate) in Heterosigma was increased only by simultaneous CO2 and temperature increases, whereas P-Bmax in Prorocentrum responded significantly to CO2 enrichment, with or without increased temperature. CO2 and temperature affected photosynthetic parameters alpha, Phi(max), E-k, and Delta F/F'(m) in both species. Increased temperature decreased and increased the Chl a content of Heterosigma and M Prorocentrum, respectively. CO2 availability and temperature had pronounced effects on cellular quotas of C and N in Heterosigma, but not in Prorocentrum. Ratios of C:P and N:P increased with elevated carbon dioxide in Heterosigma but not in Prorocentrum. These changes in cellular nutrient quotas and ratios imply that Heterosigma could be more vulnerable to N limitation but less vulnerable to P-limitation than Prorocentrum under future environmental conditions. In general, Heterosigma growth and physiology showed a much greater positive response to elevated CO2 and temperature compared to Prorocentrum, consistent with what is known about their respective carbon acquisition mechanisms. Hence, rising temperature and CO2 either alone or in combination with other limiting factors could significantly alter the relative dominance of these two co-existing HAB species over the next century. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of diatoms on the reproduction and naupliar development of Acartia bifilosa was investigated under laboratory conditions, comparing initial in situ values and laboratory-food treatments. Egg production by A. bifilosa was significantly reduced by one diatom diet (Phaeodactylum tricornutum: Pt) and by two non-diatom diets (Platymonas subordiformis: Ps and Nannochloropsis oculata: No). It was less affected by the other diatom diet (Skeletonema costatum: Sc) or by two mixed-food treatments (D-mix and DG-mix), composed of two diatoms (Pt, Sc) and four species (Pt, Sc, Ps and No), respectively. The negative effect of Pt was eliminated when adult copepods were offered mixed-food diets. There were no significant differences between the hatching success values observed in filtered seawater and in algal exudates, indicating that diatoms did not produce active dissolved toxic substances under the different food concentrations tested. The mortality rate of nauplii was higher with Pt than the other diets, suggesting that this diatom species had a negative effect on egg production, hatching success and naupliar survival simultaneously. Compared to other diets, No and Pt were not beneficial food sources for reproduction and for female and larval survival. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cruise was undertaken from 3rd to 8th November 2004 in Changjiang (Yangtze) River Estuary and its adjacent waters to investigate the spatial biomass distribution and size composition of phytoplankton. Chlorophyll-a (Chl-a) concentration ranged 0.42-1.17 mu g L-1 and 0.41-10.43 mu g L-1 inside and outside the river mouth, with the mean value 0.73 mu g L-1 and 1.86 mu g L-1, respectively. Compared with the Chl-a concentration in summer of 2004, the mean value was much lower inside, and a little higher outside the river mouth. The maximal Chl-a was 10.43 mu g L-1 at station 18 (122.67 degrees E, 31.25 degrees N), and the region of high Chl-a concentration was observed in the central survey area between 122.5 degrees E and 123.0 degrees E. In the stations located east of 122.5 degrees E, Chl-a concentration was generally high in the upper layers above 5 m due to water stratification. In the survey area, the average Chl-a in sizes of > 20 mu m and < 20 mu m was 0.28 mu g L-1 and 1.40 mu g L-1, respectively. High Chl-a concentration of < 20 mu m size-fraction indicated that the nanophytoplankton and picophytoplankton contributed the most to the biomass of phytoplankton. Skeletonema costatum, Prorocentrum micans and Scrippsiella trochoidea were the dominant species in surface water. The spatial distribution of cell abundance of phytoplankton was patchy and did not agree well with that of Chl-a, as the cell abundance could not distinguish the differences in shape and size of phytoplankton cells. Nitrate and silicate behaved conservatively, but the former could probably be the limitation factor to algal biomass at offshore stations. The distribution of phosphate scattered considerably, and its relation to the phytoplankton biomass was complicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data collected from 12 marine monitoring stations in Daya Bay from 1982 to 2004 reveal a substantial change in the ecological environment of this region. The average N/P ratio increased from 1.377 in 1985 to 49.09 in 2004. Algal species changed from 159 species of 46 genera in 1982 to 126 species of 44 genera in 2004. Major zooplankton species went from 46 species in 1983 to 36 species in 2004. The annual mean biomass of benthic animals was recorded at 123.10 gm(2) in 1982 and 126.68 g m(2) in 2004. Mean biomass and species of benthic animals near nuclear power plants ranged froth 317.9 g m(2) in 1991 to 45.24 g m(2) in 2004 and from 250 species in 1991 to 177 species in 2004. A total of 12-19 species of hermatypic corals and 13 species of mangrove plants were observed in Daya Bay from 1984 to 2002. 2008 Elsevier Ltd. All rights reserved.