201 resultados para Active chlorine
Resumo:
Optically active 2,2'-bis(2-trifluoro-4-aminophenoxy)-1,1'-binaphthyl and its corresponding racemate were prepared by a nucleophilic substitution reaction of 1,1'-bi-2-naphthol with 2-chloro-5-nitrotrifluorotoluene and subsequently by the reduction of the resulting dinitro compounds. a series of optically active and optically inactive aromatic polyimides also were prepared therefrom, These polymers readily were soluble in common organic solvents such as pyridine, N,N'-dimethylacetamide, and m-cresol and had glass-transition temperatures of 256 similar to 278 degrees C. The specific rotations of the chiral polymers ranged from 167 similar to 258 degrees, and their chiroptical properties also were studied. (C) 1999 John Wiley & Sons Inc.
Resumo:
Novel optically active aromatic poly(amide-imide)s (PAIs) were prepared from newly synthesized 2,2'-bis(3,4-dicarboxybenzamido)-1,1'-binaphyl dianhydride ((+/-)-, (S)-, and (R)-BNDADA). PAIs based on dianhydride monomers with different ee % were investigated with respect to their structures and chiroptical properties. These polymers were highly soluble in polar aprotic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, pyridine, etc., and showed high glas s transition temperatures of 287-290 degrees C and 5% weight loss temperatures of 450-465 degrees C in nitrogen. Optically active PAIs exhibited high specific rotations, excellent optical stabilities, and a dependence of optical activities on temperature. Investigations on chiroptical properties indicated that chiral conformation was possessed by optically active PAIs. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Two series of layered mixed oxides La4BaCu5-xMxO13+lambda(M = Mn, Co, x = 0 similar to 5) were prepared and characterized by means of XRD, XPS, O-2-TPD and chemical analysis. The results show that their structures are 5-layered ABO(3) perovskite, and the XPS and O-2-TPD investigation confirms that there exists synergistic effect between Cu ion and M when M ion is doped into the lattice of La4BaCu5O13+lambda,, and the synergistic effect between Mn and Cu is stronger than that of Cu-Co.
Resumo:
Optically active (R)-(+)-2, 2'-bis(2-trifluoro-4-aminophenoxy)-1, 1'-binaphthyl was prepared from 1, 1'-bi-2-naphthol. The optically active aromatic polyimide was also successfully synthesized. This new polymer has good solubility, thermal stability etc. Its specific rotation was found to be +174 degrees, and its chiroptical property was also studied.
Resumo:
Novel optically active aromatic poly(amide-imide)s (PAIs) containing 1,1'-binaphthyl-2,2'-diyl units in the main chain were prepared by polycondensation reactions of newly synthesized dianhydride, 2,2'-bis(3,4-dicarboxylzenzamido)-1,1'-binaphthyl dianhydride[(S)-BN-DADA and (+/-)-BNDADA], with diamines, The properties of the resulted PAIs were fully characterized by a combination of investigations on inherent viscosity, thermal properties(DSC and TGA), specific rotation, CD and UV-Vis absorbance. These PAIs showed good solubilities, thermal properties and optical stabilities. Interesting UV-Vis absorption behavior of films casted from these PAIs was observed and analyzed.
Resumo:
A series of new optically active aromatic polyimides containing axially dissymmetric 1,1'-binaphthalene-2,2-diyl units were prepared from optically pure (R)-(+)-or (S)-(-)-2,2'-bis(3,4-dicarboxyphenoxy)-1,1'-binaphthalene dianhydrides and various aromatic diamines via a conventional two-step procedure that included ring-opening polycondensation and chemical cyclodehydration. The optically pure isomer of dianhydride was prepared by a nucleophilic substitution of optically pure (R)-(+)or (S)-(-)1,1'-bi-2-naphthol with 4-nitrophthalonitrile in aprotic polar solvent and subsequent hydrolysis of the resultant tetranitrile derivatives, followed by the dehydration of the corresponding tetracarboxylic acids to obtain the dianhydrides. These polymers were readily soluble in common organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and m-cresol, etc., and have glass transition temperatures of 251-296 degrees C, and 5% weight loss occurs not lower than 480 degrees C. The specific rotations of the optically active polyimides ranged from +196 degrees to +263 degrees, and the optical stability and chiroptical properties of them were also studied. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The facile synthesis of optically active polypyrrole has been achieved via the enantioselective electropolymerization of pyrrole on indium-tin-oxide-coated glass electrodes in aqueous solution containing D-(+) or L-(-) tartaric acid, (1S)-(+)-10-camphorsulfonic acid and L-lactic acid. The dark films of conducting polypyrroles salt formed under electrostatic conditions (+0.65V vs. Ag/AgCl) exhibited strong circular dichroism (CD) spectra typical of polymers possessing helical chirality. The quantitative reversal of the CD spectrum of the salt grown in (+)-tartaric acid as opposed to (-)-tartaric acid suggests that electropolymerization is highly enantioselective, with one helical screw of the polymer chain being preferentially produced depending on the hand of the tartaric anion incorporated. (C) 1997 Elsevier Science Ltd.
Resumo:
The electrochemical behavior of the electroactive self-assembled monolayers (SAMs) of thiol-functionalized viologen, CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is a viologen group, on the gold electrodes is examined by cyclic voltammetry and electrochemical a.c. impedance. A monolayer of viologen is immobilized on the gold electrode surface via the Au-S bond and the normal potentials corresponding to the two successive one-electron transfer processes of the viologen active centers are -310 mV and -652 mV (vs. Ag/AgCl) in 0.1 mol l(-1) phosphate buffer solution (pH 6.96) respectively. These results suggest that the viologen SAMs are stable and well-behaved monolayers. The experimental impedance data corresponding to different forms of viologen group have been fitted to equivalent electrical circuits, and the surface capacitances and resistances have been given. The heterogenous electron transfer rates of the first and the second redox processes are 7.57 s(-1) and 1.49 s(-1) respectively through a.c. impedance.
Resumo:
Active carbon supported copper oxides were used in NO reduction. The conversions of NO reduction depends strongly on surface oxygen-containing groups on the active carbons, among them the carboxyls and lactones favored remarkably the NO reduction. However, hydrochloric acid treatment led to the decomposition of the carboxyls and lactones on C2 and C3, decreasing their reactivities for NO reduction. Concentrated HNO3 treatment of active carbon produced higher conversions of NO reduction at relatively low temperatures due to the marked increase in the amounts of the carboxyls and lactones.
Resumo:
Truly chlorine-resistant polyamide reverse osmosis composite membranes were prepared by cross-linking the interface of the composite membrane. Such membranes possessed chlorine resistance one order of magnitude more than those of the commercially used polyamide composite membranes. The effect of the degree of cross-linking on chlorine resistance was also described. (C) 1996 John Wiley & Sons, Inc.
Resumo:
A series of perovskite-like mixed oxides La(2-x)Sr(x)MO(4+lambda) (M=Cu, Co,Ni; x=0,1) was prepared and characterized using X-ray powder diffraction. The catalytic properties of these catalysts in NO decomposition were tested. The results showed that LaSrNiO4-lambda with K2NiF4 structure is very active and stable for the decomposition of NO.
Resumo:
Oxochromium (V) tetraphenylporphyrin complexes, O = Cr (V) TPP (Cl) PhI. O = Cr-(V) TPP (N3) PhI and O = Cr (V)TPP (p-CH3OC6H4O)1/2PhI were isolated from the reaction of Cr (III) TPP (Cl). Cr (III) TPP (N3) Py or Cr (III) TPP (p-CH3OC6H4O) THF with iodosy