154 resultados para 8-74
Resumo:
近地表面多年冻土对寒区生态系统的植被覆盖、水文条件、土地利用和工程建设具有重要影响,随着气候变化研究的广泛开展,区域冻土环境的变化也成为学者关心的重要议题。中国东北的多年冻土处于欧亚大陆多年冻土带的南缘,多年冻土不如以北地区发育,是十分脆弱的多年冻土。然而,多年冻土在东北寒区生态系统中却起着重要的作用。若东北多年冻土发生退缩,则有可能加速落叶松北移和湿地退缩的过程,也会对C的释放产生重要影响。因而探明现实气候条件下东北区域多年冻土的影响因子和发育状况以及未来气候条件下多年冻土的退缩趋势,将有助于促进东北寒区生态系统的冻土和其它学科研究,同时也可为寒区开发建设提供有意义的参考。 本研究从分析东北多年冻土的主要影响因子——气候、地形和土壤条件等入手,准确地掌握了多年冻土的发育状况,并以此为根据进行了景观尺度上多年冻土分布信息的提取和融深信息的研究。同时,在区域尺度上对多年冻土的现实分布和未来气候条件下多年冻土的可能分布状况进行了探讨。最终得到以下重要结论: (1)冻结数对东北多年冻土分布具有重要的指示作用 冻结数模型具有明确的物理意义,可以指示多年冻土的发生状况。研究中,利用地形、纬度等因子,结合气温和降水数据模拟了现实气候条件下东北地区的冻结数值;并依据冻结数模型的区划标准对东北多年冻土进行分区。结果表明,冻结数在指示多年冻土分布时具有重要作用。 (2)土壤含水量、地形坡度和群落因子对多年冻土具有重要影响 以大兴安岭呼中国家级自然保护区为例,调查了该区多年冻土活动层厚度,并利用多重对比分析和相关分析的统计方法,对多年冻土活动层的影响因子进行了分析。结果表明,多年冻土活动层厚度与多个环境因子之间存在着复杂的关系。其中,土壤表层含水量与活动层厚度具有极显著的负相关关系(P<0.001),其相关系数在0.90以上,说明含水量越高,活动层厚度越浅。地形坡度和活动层厚度的相关性也达到显著水平(相关系数为0.321,P=0.006),表明坡度越陡,活动层厚度越大。几乎每个样带的海拔与活动层厚度都有显著的相关性,但在整体研究区域内海拔与活动层厚度不存在相关性。这说明活动层厚度的变异仅在本研究的样带尺度上具有规律性,而在稍大尺度上这种规律性就消失了。对于不同的群落活动层厚度的多重对比分析表明,群落的差异对活动层厚度也有明显的影响,其中狭叶杜香-泥炭藓群落(Larix gmelini-Ledum palustre var. anqustum-sphagnum magellanicum)更有利于多年冻土的保存。 (3)景观尺度上的多年冻土分布状况 在景观尺度上,以呼中国家级自然保护区为研究区,应用神经网络方法,同时以土地覆盖、等效纬度、坡向和土壤湿度多种影响因子为数据源,对多年冻土分布信息进行提取。结果表明,考虑土地覆盖、等效纬度和土壤湿度的数据源组合可以获得高精度最高的多年冻土分布信息,分类精度可以达到89.0%,多年冻土面积占研究区面积百分比达到46.71%,为780.1 km2。 (4)景观尺度上多年冻土的融深状况 研究考虑了包括植被和等效纬度两个影响活动层厚度的重要因子,并将Stefan公式进行变形,简化为包含热量条件的等效纬度因子和植被条件的C因子的函数关系。最后应用该函数关系模拟了呼中自然保护区活动层厚度空间分布,模拟结果的精度为87.25%。在模拟结果中,面积和所占比例最大的活动层厚度为70-80 cm间的活动层厚度,所占面积达到341.4 km2 ,占整个研究区面积的20.43%。而面积最小的活动层厚度为30-40 cm间的活动层厚度,面积为0.02 km2 。通过群落与活动层厚度的空间分布对比发现,呼中自然保护区占最大比例的活动层(70-80 cm)所对应的植物群落主要为落叶松-丛桦-笃斯-藓类群落(Larix gmelini-Betula ovalifolia-Vaccini uliginosum-moss)。说明呼中自然保护区冻土湿地植被主要以该群落类型为主,演替处于中间阶段。 (5)区域尺度上多年冻土的分布状况 利用证据权重法,以可能影响多年冻土分布的气候、地形和土壤等因子作为数据源,对研究区在现实气候条件下的多年冻土分布进行预测,获得了多年冻土在现实气候条件下的分布概率等信息。结果表明,当分布概率大于0.17时,划分出的多年冻土的精度最高,为78.71 %。此时,多年冻土面积为2.03×104 km2 ,约占研究区总面积的1.76%。 (6)东北多年冻土分布对气候变化的响应 利用空间代时间的方法和Kappa指数,对证据权重法在预测未来气候变化条件下多年冻土分布的准确性进行了验证,结果表明,证据权重法预测气候变化条件下多年冻土的分布状况是可行的。 在CGCM3模拟的三种气候模式下,多年冻土在2050年和2100年都将发生明显的退缩。2050年,SRES A1、SRES A2和SRES B1三种气候情景下多年冻土的面积分别为786.38 km2,705.94 km2和1 028.81 km2。与现实气候下多年冻土的面积2.03×104 km2相比,多年冻土分别退缩了96.13%,96.53%和94.94%。而2100年的模拟结果表明,三种气候情景模式下,多年冻土已经全部退化。 (7)气候变化条件下东北多年冻土的分区变化 研究将冻结数等值图与2000年中国东北冻土分区图进行叠加,计算了不同多年冻土亚区的边界对应的冻结数值,建立了利用冻结数进行中国东北多年冻土分区的标准。根据冻结数指标确定的新的中国东北冻土分区与原中国东北冻土分区进行Kappa指数认证。结果表明,冻结数分区标准更适用于中国东北多年冻土的区划。 利用新的冻结数分区标准对CGCM3模拟的三种气候情景模式下的气候变化数据进行区划表明,三种气候模式下东北多年冻土区在21世纪都会有非常明显的退缩。2050年时冻土区缩减了37.7%-42.6%,2100年时缩减了62.5%-74.0%。同时,研究结果显示,东北多年冻土区域的退缩不仅发生在多年冻土区的南界,同时多年冻土的中心退缩也较为明显,即大片连续多年冻土亚区和大片连续—岛状多年冻土亚区的退缩最为剧烈。2050年时,三种气候情景下,大片连续多年冻土亚区将退缩88.8%以上;2100年时,SRES A2模式下,大片连续多年冻土亚区将完全消失。
Resumo:
本论文在国内外首次报导了中国辽宁海洋放线菌资源考察研究结果。结果表明中国辽宁海洋放线菌资源丰富;在分离出的海洋放线菌中以链霉菌属居绝对优势,占所分离菌株总数的90%以上,此外尚有少量的海洋小单孢菌和海洋诺卡氏菌;所获提的海洋链霉菌可分为7个类群,已鉴定出11个种和1个新种。选择生长较快的链霉菌属13株菌株,对其形态特征、培养特征、生理生化特征、抗菌谱、细胞化学组分、DNA中的G+C mol%等内容进行系统研究。结果,全部13株菌株均能忍耐6%NaCl和pH13的碱性,5株菌株能耐受10%NaCl;G+C mol%均在69.5%-72.5%之间;均为细胞壁I型;但在形态特征、培养特征、生理生长特性、抗菌谱等方面各菌株之间又有差异。根据链霉菌鉴定手册,将13株菌株中的12株逐一定名:(1)将菌株H72-9定名为威德摩尔链德菌(S. wedmorensis, H72-9),(2)将菌株H73定名为细黄链霉菌(S. microflavus, H73)(3)将菌株H74-2定名为天蓝色链霉菌生天蓝亚种(S. coelicolor,subsp. coelicoferus, H74-2),(4)将菌株Hai-75定名为娄彻氏链霉菌(S. rochei, Hai-75),(5)将菌株H75-2定名为鲜黄链霉菌(S. galbus, H75-2),(6)将菌株H76定名为束丛链霉菌(S. fasciculus, H76),(7)将菌株H77定名为灰红链霉菌(S. griseoruber, H77),(8)将菌株H78-1定名为栗褐链霉菌(S. badius, H78-1),(9)将菌株J5定名为吡啶霉素链霉菌(S. pyridomyceticus, J5),(10)将菌株J7定名为锈亦链霉菌(S. rubiginosus, J7),(11)将菌株J10和J11定名为栗色浑圆链霉菌(S. castaneoglobosus)。将13株中的另一株海洋放线菌Hai-74确定为放线菌新种,它除了在形态特征、培养特征、生理生化特性等与已知近似种有明显的不同外,最主要的是在其独特的“索状”孢子丝结构,为国内外首次发现,故将此新种命名为索孢天蓝链霉菌(Strepomyces multisticho-cateniformis n. sp. Xie and Ding)。在研究中国辽宁海洋放线菌的抗菌性能中,我们还首次发现并报道了海洋细黄链霉菌H73的抗菌物质,它能显著减轻大豆连作障碍(重茬大豆根际土壤紫青霉菌及其毒素对大豆的危害),因此在今后它很有可能被用来研制一种能够减轻大豆连作障碍的新型农用抗生系。为此,我们对海洋细黄链霉菌H73的基因组DNA文库进行了构建,这将为今后研究有关抗菌基因方面的工作奠定基础。
Resumo:
本文系统研究了沈阳城市森林的布局与结构、城市森林功能、城市森林病虫害发生与树木健康状况和城市自然资源与社会经济状况等指标对沈阳城市森林生态系统健康与管理的影响。同时一,采用2种生态系统健康评价方法对沈阳城市森林生态系统健康状况进行了评价,并提出了沈阳城市森林生态系统健康管理的对策。研究结果如下:1、截至2004年末,沈阳城市森林植被覆盖率已经达到35%,城市森林林地分布基本合理,但需要进一步加强道路林地、居住区林地和城郊大面积生态林建设。2、沈阳城市森林以乔木为主,乔灌株数比为1.7:1,乔灌的覆盖度比约为7:1。3、沈阳城市森林不同类型林地中植物组成不同。公园林地中有74个属,137个种(变种);庭院林地中有53个属,104个种(变种);居住区林地中有45个属,81个种(变种);道路林地中有43个属,94个种(变种);运河风景林地中有75个属,142个种(变种);棋盘山风景林地中有48个属,118个种(变种)。4、公园林地、庭院林地、居住区林地、道路林地和运河风景林地的Shannon一Wiener多样性指数分别为2.78、3.05、3.15、3.18和3.18,均匀度指数分别为0.56、0.66、0.72、0.70和0.64。除了棋盘山风景林地外,沈阳城市森林中栽植总量超过乔木总量5%的乔木树种有7个属,分别为李、柳树、杨树、桧柏、榆树、槐树和银杏,7种树木总量达到了全部乔木总量的82.09%;栽植总量超过灌木总量5%的灌木树种也有7个属,分别为水腊、丁香、李属,小聚、玫瑰、忍冬和连翘,7个属灌木总量达到了全部灌木总量的87.92%。5、公园林地、庭院林地、道路林地和防护林地中OBH<20cm、20cm<DBH<60cm和DBH>60cm树木的比例分别为:57.9%、40.0%、2.1%,49.2%、47.8%、3.0%,65.3%、33.1%、1.6%和64.6%、34.9%、0.5%,表明沈阳城市森林树木的规格总体上偏小。6、经样方调查和CITYgreen模型计算,沈阳城市森林的生态效益约2.0亿USD/yr.。公园林地、庭院林地和风景林地的景观指标相对较高;道路林地和居住区林地的景观效果一般;防护林地的景观效果较差。7、目前已经发现的沈阳城市森林病害约600余种,虫害约700余种,其中杨树主要病虫害39种,柳树的主要病虫害有33种,榆树和槐树的主要病虫害均为,1种。杨柳树腐烂病、光肩星天牛、天幕毛虫、桃红颈天牛和美国白蛾等是近10年来沈阳城市森林中普遍发生和造成严重危害的主要病虫害。沈阳城市森林主要树木的平均健康指数为2.68,处于一般健康状态。8、沈阳城市森林的土壤和水资源状况均不利于树木的健康生长,沈阳的社会经济发展也有待于进一步提高。9、经过生物指示物法(光肩星天牛为生物指示物)、专家权重法、公众问卷调查和对比研究,沈阳城市森林生态系统总体上处于亚健康状态。10、通过对沈阳城市森林资源、管理状况的调查研究和健康状况的评价,本文提出了沈阳城市森林生态系统健康管理的对策,包括合理规划沈阳城市森林林地布局,增加道路林地、居住区林地和城郊林地的面积和植被覆盖率;调整树木种类组成,避免单一或少数树种的大量栽植,提高生物多样性水平;保护大树和古树;增加城市森林管理资金的投入;应用先进技术,采取科学的病虫害防治和植物养护方法,促进树木的健康生长等。This project systematically studied the urban forest ecosystem health and management in Shenyang. The study explored factors, such as urban forest structure, distribution, pests, aesthetic value, ecological benefit, natural resources and socieo-economic status, that affecting the urban forest ecosystem health and management. Two methods were used to evaluate the ecosystem health. This project also proposed Shenyang's urban forest ecosystem health management strategies. The research results can be summarized as follows: 1. As of the end of 2004, urban forest coverage in Shenyang is about 35%, and is in relatively even patch distribution pattern. However, the street trees and roadside forest patches, residential block forest patches should be enhanced. 2. Trees are the major component of the Shenyang s urban forest, followed by shrubs. The quantity ratio of tree to shrub is about 1.7:1, and the coverage ratio of trees to shrub is about 7:1. 3. Species composition varies by location. There are 74 genera, 137 species (including varieties) in the public parks; 53 genera, 104 species (and var.) in the green spaces of the institution (including school), factory, and company; 45 genera, 81 species (var.) in residential blocks; 43 genera, 94 species (var.) in streets and roadside forest patches; 75 genera, 142 species (var.) in the Canal landscape forest patches; 48 genera, 118 species (var.) in the Qipan Mountain recreation forest. 4. The Shannon-Woener indices varies in parks, in institution, factory, and company yards, in streets and roadside forest patches, in residential blocks.there are 2.78, 3.05, 3.18, 3.15, 3.18, respectively; and the evenness indices are 0.56, 0.66, 0.70, 0.72, 0.64, respectively. Besides the Qipan Mountain forest patches, trees of 7 genera, Prunus spp., Salix spp., Populus spp., Sabina spp., Ulmus spp., Robinia spp. and Ginkgo biloba are of more than 5% the total urban trees, respectively. In fact, trees from these 7 genera are about 82% of all trees in Shenyang's urban forests. In terms of shrubs, species of 7 genera, Ligustrum spp., Syringa spp., Prunus spp., Berberis spp., Rosa spp., Lonicera spp., and Forsythia spp. are more than 5% the total urban shrubs, respectively. 88% of all the shrubs in Shenyang s urban forest are from these 7 genera. 5. The diameter class of DBH<20cm, 20cm
Resumo:
Absence of gravity or microgravity influences the cellular functions of bone forming osteoblasts. The underlying mechanism, however, of cellular sensing and responding to the gravity vector is poorly understood. This work quantified the impact of vector-directional gravity on the biological responses of Ros 17/2.8 cells grown on upward-, downward- or edge-on-oriented substrates. Cell morphology and nuclear translocation, cell proliferation and the cell cycle, and cytoskeletal reorganization were found to vary significantly in the three orientations. All of the responses were duration-dependent. These results provide a new insight into understanding how osteoblasts respond to static vector-directional gravity.
Resumo:
本研究针对川西北高山草甸缺乏科学管理,过度放牧导致草场退化,并由此引发的一系列生态环境问题,选取红原县瓦切乡1996 年草地承包后形成的四个放牧强度草场,即不放牧、轻度(1.2 头牦牛hm-1)、中度(2.0 头牦牛hm-1)和重度放牧(2.9 头牦牛hm-1),作为研究对象,研究了不同放牧强度对草地植物-土壤系统中碳、氮这两个最基本物质的分布格局和循环过程的影响,并探讨了放牧干扰下高山草甸生态系统的管理。 1.放牧对草地植物群落物种组成,尤其是优势种,产生了明显的影响。不放牧、轻度、中度和重度放牧草地群落物种数分别为22,23,26,20 种,群落盖度分别是不放牧96.2%>中度93.6%>轻度89.7%>重度73.6%。随放牧强度的增加, 原植物群落中的优势种垂穗鹅冠草( Roegneria nutans )、发草(Deschampsia caespitosa)和垂穗披碱草(Elymus nutans)等禾草逐渐被莎草科的川嵩草(Kobresia setchwanensis)和高山嵩草(Kobresia pygmaea)所取代成为优势种。同时,随放牧强度的增加,高原毛茛(Ranunculus brotherusii)、狼毒(Stellera chamaejasme)、鹅绒委陵菜(Potentilla anserina)和车前(Plantagodepressa)等杂类草的数量也随之增加。 2.生长季6~9 月份,草地植物地上和地下生物量(0~30cm)都是从6 月份开始增长,8 月份达到最高值,9 月份开始下降。每个月份,通常地上生物量以不放牧为最高,重度放牧总是显著小于不放牧;地下生物量随放牧强度的增加表现为增加的趋势,通常重度和中度放牧显著高于不放牧和轻度放牧草地。不放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总生物量平均值分别是1543、1622、2295 和2449 g m-2,但随放牧强度的增加越来越来多的生物量被分配到了地下部分,地下生物量占总生物量比例的大小顺序分别是重度88%>中度82%>轻度76%>不放牧69%。生物量这种变化主要是由于放牧使得群落优势种发生改变而引起的,其分配比例的变化体现了草地植物对放牧干扰的适应策略。 3.植物碳氮贮量的季节变化类似与生物量的变化。每个月份,不同放牧强度间植物地上碳氮的贮量有所不同,一般重度放牧会显著减少植物地上碳氮贮量。植物根系(0~30cm)碳氮贮量随放牧强度的增加表现为增加的趋势,通常重度和中度放牧显著高于不放牧和轻度放牧草地。不放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总碳平均值分别是547、586、847 和909 g m-2,根系碳贮量占植物总碳的比例大小顺序分别是重度88%>中度82%>轻度76%>不放牧69%;放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总氮平均值分别是17、17、23 和26 g m-2,根系氮贮量占植物总氮的比例大小顺序分别是重度79%>轻度71%>中度70%>不放牧65%。 4. 土壤有机碳贮量(0~30cm)的季节变化表现为7 月份略有下降,8 月开始增加,9 月份达到的最大值。土壤氮贮量的季节变化表现为随季节的推移逐渐增加的趋势。增加的放牧强度不同程度的增加土壤有机碳氮的贮量。不放牧、轻度、中度和重度放牧6~9 月份4 个月的土壤有机碳贮量的平均值分别是9.72、10.36、10.62 和11.74 kg m-2,土壤氮贮量分别为1.45、1.56、1.66 和1.83 kg m-2。土壤中有机碳(氮)的贮量都占到了植物-土壤系统有机碳(氮)的90%以上,但不同放牧强度之间的差异不明显。 5. 土壤氮的总硝化和反硝化,温室气体N2O 和CO2 的释放率的季节变化表现为从6 月份开始增加,7 月份达到最大值,8 月份开始下降,9 月份降为最小值。增加的放牧强度趋向于增加土壤氮的总硝化和反硝化作用,温室气体N2O和CO2 的释放率,通常情况下,中度放牧和重度放牧显著地加强了这些过程。 6.垂穗鹅冠草(Roegneria nutans)和川嵩草(Kobresia setchwanensis)凋落物在不同放牧强度下经过1 年的分解,两种凋落物的失重率及其碳氮的损失率3都随放牧增加表现为增加的趋势。在同一放牧强度下,川嵩草凋落物的失重率和碳氮的损失率都高于垂穗鹅冠草凋落物。 7. 尽管重度放牧显著增加了土壤碳氮的贮量,但同时也显著降低了植被群落盖度,降低了植物地上生物量,因此,久而久之会减少植物向土壤中的碳氮归还率;与不放牧和轻度放牧相比,重度放牧又显著增加了土壤CO2 和NO2 的排放量,这是草地生态系统碳氮损失的重要途径。由此可见,对于这些地处青藏高原的非常脆弱的高山草甸生态系统,长期重度放牧不仅导致植物生产力降低,而且将导致草地生态系统退化,甚至造成土壤中碳氮含量减少。 Long-term overgrazing has resulted in considerable deterioration in alpine meadowof the northwest Sichan Province. In order to explore management strategies for thesustainability of these alpine meadows, we selected four grasslands with differentgrazing intensity (no grazing-NG: 0, light grazing-LG: 1.2, moderate grazing-MG: 2.0,and heavy grazing-HG: 2.9 yaks ha-1) to evaluate carbon, nitrogen pools and cyclingprocesses within the plant-soil system in Waqie Village, Hongyuan County, Sichuan Province. 1. Grazing obviously changed the plant species composition, especially ondominant plant species. Total number of species is 22, 23, 26, and 20 for NG, LG, MGand HG, respectively. Vegetation coverage under different grazing intensity ranked inthe order of 96.2% for HG>93.6% for MG>89.7% for LG>73.6% for NG. Thedominator of HG community shifted from grasses-Roegneria nutans andDeschampsia caespitosa dominated in the NG and LG sites into sedges-Kobresiapygmaea and K. setchwanensis. At the same time, with the increase of grazingintensity, the numbers of forbs, such as Ranunculus brotherusii, Stellera chamaejasme,Potentilla anserine and Plantago depressa, increased with grazing intensity. 2. Over the growing season, aboveground and belowground biomass showed a 5single peak pattern with the highest biomass in August. For each month, abovegroundbiomass usually was the highest in the NG site and lowest in the HG site.Belowground biomass showed a trend of increase as grazing intensity increased and itwas significantly higher in the HG and MG site than in the NG and LG sites. Totalplant biomass averaged over the growing season is 1543, 1622, 2295 and 2449 g m-2for NG, LG, MG and HG, respectively. The proportion of biomass to total plantbiomass for NG, LG, MG and HG is 88%, 82%, 76% and 69%, respectively. Higherallocation ratio for is an adaptive response of plant to grazing. 3. Carbon and nitrogen storage in plant components followed the similar seasonalpatterns as their biomass under different grazing intensities. Generally, heavy grazingsignificantly decreases aboveground biomass carbon and nitrogen compared to nograzing. Carbon and nitrogen storage in root tended to increase as grazing increasedand they are significantly higher in the HG and MG sites compared to the LG and NGsite. Total Carbon storage in plant system averaged over the growing season is 547,586, 847 and 909 g m-2 for NG, LG, MG and HG, respectively, while 17, 17, 23 and 26g m-2 for nitrogen. The proportion of carbon storage in root to total plant carbon forNG, LG, MG and HG is 88%, 82%, 76%, 69%, respectively, while 65%, 71%, 70%and 79% for nitrogen. 4. Carbon storage in soil (0-30cm) decreased slightly in July, then increased inAugust and peaked in September. Nitrogen storage in soil tended to increase withseason and grazing intensity. Total Carbon storage in soil averaged over the growingseason is 9.72, 10.36, 10.62 and11.74 kg m-2 for NG, LG, MG and HG, respectively,while 1.45, 1.56, 1.66 and 1.83 for nitrogen. The proportion of carbon (nitrogen)storage in soil to plant-soil system carbon (nitrogen) storage for NG, LG, MG and HGis more than 90%, which is not markedly different among different grazing intensities. 5. Gross nitrification, denitrification, CO2 and N2O flux rates in soil increasedfrom June to July and then declined until September, all of which tended to increasewith the increase of grazing intensity. Generally, heavy and moderate grazing intensitysignificantly enhanced these process compared to no and light grazing intensity. 6. After decomposing in situ for a year, relative weight, carbon and nitrogen loss in the litter of Roegneria nutans and Kobresia setchwanensis tended to increase asgrazing intensity increased. Under the same grazing intensity, relative weight, carbonand nitrogen loss in the litter of Kobresia setchwanensis were higher than these in thelitter of Roegneria nutans. 7. Although heavy grazing intensity resulted in higher levels of carbon andnitrogen in plant and soil, it decreased vegetation coverage and aboveground biomass,which are undesirable for livestock production and sustainable grassland development.What is more, heavy grazing could also introduce potential carbon and nitrogen lossvia increasing CO2 and N2O emission into the atmosphere. Grazing at moderateintensity resulted in a plant community dominated by forage grasses with highaboveground biomass productivity and N content. The alpine meadow ecosystems inTibetan Plateau are very fragile and evolve under increasing grazing intensity by largeherbivores; therefore, deterioration of the plant-soil system, and possible declines insoil C and N, are potential without proper management in the future.
Resumo:
通过趾骨切片可以准确鉴定年龄,了解一个物种的最长寿命,也为我们研究确定一个物种的生长特点、性成熟期,以及一个地区一个物种的年龄结构、种群生态(Marnell,1998)和群落生态提供重要信息(Morrison,et a1.,2004)。 本论文使用骨骼鉴龄法对中国浙江省宁波市北仑瑞岩寺林场的镇海棘螈(Echinotriton chinhaiensis)雌性繁群进行了年龄结构研究。结果显示:第一次参加繁殖的年龄为3龄;繁群中数量占优势的是5龄、6龄。而在6龄以后参加繁殖的雌性个体数便开始随着年龄的增大而逐渐减少。参加繁殖的雌性年龄最大个体为8龄。平均年龄为5.13龄。同时对其年龄和头体长、体全长的相关性检验,发现其年龄与头体长和体全长不相关,镇海棘螈雌性的生长方式表现为性成熟后能量主要用于繁殖。 另外,对李子坪大凉疣螈(Tylototriton taliangensis) 雄性繁群进行了年龄结构研究。结果显示:大凉疣螈雄性第一次参加繁殖的年龄为4龄;繁群中数量占优势的是5龄、6龄、7龄。而在7龄以后参加繁殖的雄性个体数便开始随着年龄的增大而逐渐减少。参加繁殖的雄性中年龄最大的个体为10龄。平均年龄为6.7龄。对其年龄和头体长、体全长的相关性检验,发现其年龄与头体长和体全长不相关,大凉疣螈雄性生长特点也表现为性成熟后生长缓慢的特点。 研究材料方面,本文采用野外采样与标本馆标本相结合的方式获得了中国蝾螈科2个重要保护物种繁殖群体的剪(指)趾材料,使得建立于其上的年龄结构工作更加可靠、更加具有代表性。 此外,本论文讨论了镇海棘螈瑞岩寺种群繁殖总量年度间的差异及其产生原因。将1998、1999、2000、2008、2009年镇海棘螈(Echinotriton chinhaiensis) 瑞岩寺种群的繁殖量进行比较,发现虽然雌性平均窝卵数比较稳定,但繁殖总量小于1998、1999、2000年任何一年总产卵量的50%。对2008年镇海棘螈繁殖量大幅下降的原因分析发现, 2007年9、10月影响严重台风的两次强台风、瑞岩寺景区开发等因素可能是造成近年该种群繁殖量大幅下降的原因。而2008年初50年不遇的低温是否影响镇海棘螈的繁殖值得进一步追踪研究。2009年繁殖量较2008年没有明显的增长,可能是由于2007年的台风影响了其繁殖营养的积累。台风的影响可能存在滞后现象,对此有待进一步监测证明。 本研究首次对中国蝾螈科物种进行的年龄结构鉴定,为进一步了解中国蝾螈科动物的种群生态打下了坚实的基础。 Using skeletochronology, we can know the life span of a species, age of reaching sexual mature, and of course age structure, which are vital(Morrison,et a1.,2004). Skeletochronology was performed on Echinotriton chinhaiensis Ruiyansi female population. The result shows that: The oldest individuals were 8 years old and the youngest ones were 3 years old. Individuals of age class 5(39.13%) and 6(21.74%) were most numerous. The number of individuals participated in reproduction decreased with the increase of age after the sixth year. Average age is 5.13 years. There is no correlation between age and body size (SVL and TL). For female chinhai salamander, energy is devoted to reproduction after reaching sexual maturation. While using skeletochronology to study Tylototriton taliangensis Liziping male population, the oldest individuals is 10 years old, and the youngest ones is 4 years old. Individuals of the age class 5, 6, and 7 dominat this population. The number of individuals decrease with the increase of age also after the seventh year. Average age is 6.7 years old in this population. there is also no correlation between age and body size (SVL and TL).It turned out that T. taliangensis tend to grow slowly after reaching sexual maturation. In this thesis, specimens from both wild and museum were used to gain enough toe clipping samples. A big sample size guarantees the reliability of this study. In the meantime, E. chinhaiensis’s annual reproduction of the year 1998, 1999, 2000 ,2008,and 2009 was compared. The result shows there is a huge decline in E. chinhaiensis’s annual reproduction in 2008,even the egg clutch is very stable. After analyzing, it turned out the huge decline in 2008 was probably caused by typhoon in 2007, besides the effect of tourism development and cash crop planting. While the impact of extreme weather of 2008 on reproduction needs further investigation. In the year 2009, there is no obvious increase in annual reproduction. It maybe due to lasting impact of typhoon in 2007. It is the first age-structure study on these two Chinese salamanders. A solid foundation was laid for further population ecology study of these two species.
Resumo:
作物的抗旱性是一个多基因控制的、极为复杂的数量性状,植物对干旱在分子水平上的差异反应通过植物组织生理和细胞生物学水平,最终表现为植物抗旱性的不同。在我国,旱地农业超过耕地面积的50%,但水资源短缺,因此培育和选育抗旱高产作物是发展节水型农业最有效的途径。 青藏高原气候恶劣、年均降雨量少,也是世界大麦初生起源中心,因而蕴藏了十分丰富的与抗逆相关的种质资源材料,从这些特殊的资源材料克隆抗旱基因,不仅对培育抗旱、优质、高产大麦新品种具有重要理论意义和经济价值,而且对整个作物抗旱基础和育种应用研究都具重大促进作用。 为了筛选青稞(裸大麦,Hordeum vulgare ssp. vulgare)抗旱性材料,本研究选用来自青藏高原不同地区的84份青稞为材料,在叶片失水率(water loss rate, WLR)检测分析的基础上,选择失水率值差异显著的12个品种,通过相对含水量(relative water content, RWC)和反复干旱法评价其抗旱性,并通过植株对干旱胁迫下的丙二醛(MDA)含量和游离脯氨酸(free-proline)含量变化,了解不同抗旱性材料的生理反应特性。选择抗旱性强弱不同的品种各两份进行LEA2蛋白基因(Dhn6基因)、LEA3蛋白基因(HVA1基因)的克隆,比较LEA蛋白结构差异与作物抗旱性之间的关系。同时,对抗旱性不同的青稞品种受到干旱时间不同的失水变化率(dynamics water loss rate, DWLR)进行了检测;对抗旱性不同的青稞对照材料进行2 h、4 h、8 h和12 h的快速干旱处理,通过SYBR Green实时荧光定量RT-PCR技术对Dhn6基因、Dhn11基因、Dhn13基因和HVA1基因在不同抗旱性材料受到不同干旱时间处理后的相对表达水平进行了检测。本研究对LEA蛋白基因在抗旱性不同的青稞材料中的干旱胁迫分子水平上的差异反应进行了研究,也对植物的抗旱机理进行了初步探讨。主要研究结果如下: 1. 青稞苗期进行离体叶片失水率测定结果表明,来自青藏高原的84份青稞材料的WLR在0.086~0.205gh-1g-1DW之间。选择WLR低于0.1gh-1g-1DW和WLR高于0.18gh-1g-1DW的品种各6份,并对苗期分别进行未干旱及干旱12小时的处理。相对含水量检测结果表明,低失水率青稞材料干旱后的具有更高的相对含水量,盆栽缺水试验也显示叶片失水率低的材料耐旱能力强于失水率高的材料。通过水合茚三酮法测定离体叶片游离脯氨酸的含量,结果表明,所有品种未干旱处理时,游离脯氨酸含量差异不大(17.10~25.74 µgg-1FW);干旱12小时后,低失水率的品种游离脯氨酸含量明显增高(32.99~53.45µgg-1FW),高失水率品种的游离脯氨酸含量与干旱前变化不明显(P<0.05)。硫代巴比妥酸法测定离体叶片丙二醛(MDA)含量,结果显示,12份所选对照品种中,丙二醛的含量在0.97~2.74nmolg-1FW,干旱12小时后丙二醛的含量显著上升(1.46~4.74nmolg-1FW),高失水率的6个品种的丙二醛含量在未干旱和干旱处理时都明显高于低WLR品种。本研究结果表明青稞的低失水率、低丙二醛含量、高相对含水量和高脯氨酸含量具相关性(P<0.05)。综上研究,我们认为作物失水率的测定可以作为快速检测作物抗旱性的指标之一,因此,强抗旱品种喜玛拉10号(TR1)、品比14号(TR2)和弱抗旱品种冬青8号(TS1)、QB24 (TS2)被选作抗旱基因克隆和表达分析的研究材料。 2. 高等植物胚胎发育晚期丰富蛋白(late embryogenesis abundant proteins, LEA proteins)与植物耐脱水性密切相关,为了探讨青稞LEA蛋白结构差异性与植物抗旱性的关系,本研究以强抗旱品种(喜玛拉10号、品比14号)和弱抗旱品种(冬青8号、QB24)为材料,利用同源克隆法,通过RT-PCR,分别克隆了与抗旱性密切相关的Dhn6基因和HVA1基因。Dhn6基因序列分析结果表明,强抗旱品种品比14号和弱抗旱品种冬青8号Dhn6基因所克隆到的序列为1026bp,它们之间只有5个碱基的差异;喜玛拉10号和QB24克隆到的序列长963bp。在强弱不同的抗旱品种中有22个核苷酸易突变位点,相应的脱水素氨基酸序列推导结果表明,22个核苷酸突变位点中,仅有8个位点导致相应的氨基酸残基的改变,其余的位点系同义突变,另外,21个富含甘氨酸序列的缺失并没有联系作物抗旱性特征。推测这些同义突变位点的氨基酸残基对维持青稞DHN6蛋白的正常结构和功能起着非常重要的作用,也可能DHN6蛋白对青稞长期适应逆境胁迫和遗传进化的结果。对HVA1基因的序列分析结果表明,冬青8号、QB24、品比14号和喜玛拉10号的目的基因核苷酸序列全长分别为661bp、697bp、694bp和691bp,它们都包含1个完整的开放阅读框。相应的LEA3蛋白氨基酸序列结果表明,11个高度保守的氨基酸残基组成基元重复序列的拷贝数与青稞抗旱性之间没有必然关系,在强抗旱品种(喜玛拉10号、品比14号)中三个共同的氨基酸突变位点Gln32、Arg33和Ala195可能对抗旱蛋白的结构和功能有影响;另外,强抗旱青稞品种LEA3蛋白质中11-氨基酸保守基元序列拷贝数和极性氨基酸占蛋白的比例更高,推测LEA3蛋白中基元序列拷贝数和极性氨基酸占蛋白的比例对该蛋白的结构和功能影响更大。 3. LEA蛋白基因的表达水平的上调与植物的耐脱水性密切相关,我们对强抗旱性材料(喜玛拉10号、品比14号)和弱抗旱材料(冬青8号、QB24)进行干旱处理2 h、4 h、6 h、8 h和10 h的失水变化率进行测定,结果表明弱抗旱品种在2~4小时之间失水率变化最明显,而四个对照品种的失水率在8小时后和24小时的失水率值变化不大。进一步提取青稞苗期进行2 h、4 h、8 h和12 h的干旱处理后的总RNA,通过SYBR Green实时荧光定量RT-PCR技术对青稞脱水素基因(Dhn6、Dhn11和Dhn13)和LEA3蛋白基因(HVA1)的相对表达水平受干旱时间和作物抗旱性的影响进行了检测。研究发现,抗旱性不同的青稞品种随干旱处理的时间延长,Dhn6、Dhn11、Dhn13和HVA1基因的相对表达水平不同。 Dhn6基因的相对表达水平在强抗旱青稞品种干旱8小时后快速上升,但在弱抗旱青稞品种干旱处理12小时后检测到更高表达量;Dhn11基因在对照青稞抗旱品种的表达累积水平随干旱时间的延长持续下降;整个干旱过程中,Dhn13基因的相对表达水平在弱抗旱品种持续上升,在强抗旱品种中干旱处理8小时快速上升并达到最高,干旱12小时后降低。与脱水素基因相比较,强抗旱青稞品种在干旱2小时后HVA1基因的相对表达水平显著升高,相对表达量随干旱处理的时间持续上升,在干旱12小时后达到最高;与之相比较,在整个干旱过程中,弱抗旱品种的相对表达水平显著低于强抗旱品种,在干旱8小时之前弱抗旱品种的相对表达水平变化不明显;在干旱8~12小时后却显著上升。上述结果表明,不同的LEA蛋白在植物耐脱水过程中的干旱表达累积水平不同;干旱不是诱导高等植物Dhn11基因表达的主要因素;植物的抗旱性不同,不同LEA蛋白基因对干旱的反应有差异。推测某些LEA蛋白基因的干旱胁迫早期表达累积程度与植物的抗旱性直接相关;其中,Dhn11基因和Dhn12基因不同的表达模式可能与干旱调控表达顺式作用成分(dehydration responsive element, DRE)的有无或结构上的差异有关。 本研究结果认为,(1)失水率和相对含水量可作为植物抗旱性检测的指标之一;(2) DHN6同义突变位点的氨基酸残基对维持该蛋白的正常结构和功能起着重要作用;(3) 11-氨基酸保守基元序列拷贝数和极性氨基酸的比例对LEA3蛋白结构和功能有重要影响;(4)LEA蛋白表达随着干旱胁迫程度而增加,但Dhn11基因并不受干旱诱导表达;(5)作物的抗旱性不同,LEA蛋白对干旱的累积反应并不相同,干旱早期LEA蛋白的累积程度可能会影响植物的抗旱性。 Drought resistance was a complex trait which involved multiple physiological and biochemical mechanisms and regulation of numerous genes. Because its complex traits, it is difficult to understand the mechanisms of drought resistance in plants. Plants respond to water stress through multiple physiological mechanisms at the cellular, tissue, and whole-plant levels. Tibetan hulless barley, a pure line, is a selfing annual plant that has predominantly penetrated into the Qinghai-Tibetan Plateau and remains stable populations there. The wide ecological range of Tibetan hulless barley differs in water availability, temperature, soil type and vegetation, which makes it possess a high potential of adaptive diversity to abiotic stresses. This adaptive genetic diversity indicates that the potential of Tibetan hulless barley serves as a good source for drought resistance alleles for breeding purposes. 12 contrasting drought-tolerant genotypes were selected to measure relative water content (RWC), maldondialdehyde (MDA) and proline content, based on values of water loss rate (WLR) and repeated drought methods from Tibetan populations of cultivated hulless barley. As a result of the screening, sensitive and tolerant genotypes were identified to clarify relationships between characteristics of LEA2/LEA3 genes sequences and expression and drought-tolerant genotypes, associated with resistance to water deficit. In addition, dynamics water loss rate (DWLR) was measured to observe the changes on diffrential drought-tolerant genotypes. Real-time quantitative RT-PCR was applied to detect relative expression levels of Dhn6, Dhn11, Dhn13 and HVA1 genes in sensitive and tolerant genotypes with 2 h, 4 h, 8h and 12 h of dehydration. In the present study, differential sequences and expression of LEA2/LEA3 genes were explored in Tibetan hulless barley, associated with phenotypically diverse drought-tolerant genotypes. 1. The assessments of WLR and RWC were considered as an alternative measure of plant water statues reflecting the metabolic activity in plants, and the parameters of MDA and proline contents were usually consistent with the resistance to water stress. The values of detached leaf WLR of the tested genotypes were highly variable among 84 genotypes, ranging from 0.086 to 0.205 g/h.g DW. The 12 most contrasting genotypes (6 genotypes with the lowest values of WLR and 6 genotypes with the highest values of WLR) were further validated by measuring RWC, MDA and free-proline contents, which were well watered and dehydrated for 12 h. Results of RWC indicated that the values of 12 contrasting genotypes RWC ranged from 89.94% to 93.38% under condition of well water, without significant differences, but 6 genotypes with lower WLR had higher RWC suffered from 12 h dehydration. The results indicated that lower MDA contents, lower scores of WLR and higher proline contents were associated with drought-tolerant genotypes in hulless barley. Remarkably, proline amounts were increased more notable in 6 tolerant genotypes than 6 sensitive genotypes after excised leaves were dehydrated for 12 h, with control to slight changes under condition of well water. Results of MDA contents showed that six 6 tolerant genotypes had lower MDA contents than the 6 sensitive genotypes under both stressed and non-stressed conditions. As a result of that screening, drought- resistant genotypes (Ximala 10 and Pinbi 14) and drought-sensitive genotypes (Dongqing 8 and QB 24) were chosen for comparing the differential characteristics of LEA2/LEA3 genes and their expression analysis. It was conclusion that measurements of WLR could be considered an alternative index as screening of drought-tolerant genotypes in crops. 2. Late embryogenesis abundant (LEA) proteins were thought to protect against water stress in plants. To explore the relationships between configuration of LEA proteins and phenotypically diverse drought-tolerant genotypes, sequences of LEA genes and their deduced proteins were compared in Tibetan hulless barley. Results of comparing Dhn6 gene in Ximala 10 and QB24 indicated that absence of 63bp was found, except that only 5 mutant nucleotides were found. While 22 mutant sites were taken place in Dhn6 gene between sensitive and tolerant lines, 14 synonymous mutation sites appeared in the contrasting genotypes. The additional/absent polypeptide of 21 polar amino acid residues was not consistent with phenotypically drought-tolerant genotypes in hulless barley. It was deduced that synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein. The sequencing analysis results indicated that each cloned HVA1 gene from four selected genotypes contained an entire open reading frame. The whole sequence of HVA1 gene from Dongqing 8, QB24, Pinbi 14 and Ximala 10 was respectively 661bp, 697bp, 694bp and 691bp. Results of DNA sequence analyses showed that the differences in nucleotides of HVA1 gene in sensitive genotypes were not consistent with that of tolerant genotypes, except for absence of 33 nucleotides from +154 to +186 (numbering from ATG) in QB24. Database searches using deduced amino acid sequences showed a high homology in LEA3 proteins in the selected genotypes. Multiple sequence alignments revealed that LEA3 protein from Dongqing 8 was composed of 8 repeats of an 11 amino acid motif, less the fourth motif than Pinbi 14, Ximala 10 and QB24. Consistent mutant amino acid residues appeared in contrasting genotypes by aligning and comparing the coding sequence region, including Gln32, Arg33 and Ala195 in tolerant genotypes as compared to Asp32, Glu33 and Thr195 (Thr184 in Dongqing 8) in sensitive lines. It was concluded that consistent appearance of Gln32, Arg33 and Ala195 would contributed to functions of LEA3 protein in crops, as well as higher proportion of 11-amino-repeating motifs and polar amino acid residues. 3. Most of the LEA genes are up-regulated by dehydration, salinity, or low temperature, are also induced by application of exogenous ABA, which increases in concentration in plants under various stress conditions and acts as a mobile stress signal. Higher levels of proteins of LEA group 3 accumulated was correlated well with high level of desiccation tolerance in severely dehydrated plant seedlings. Dehydrins (DHNs), members of LEA2 protein, are an immunologically distinct protein family, and Dhn genes expression is associated with plant response to dehydration. Dynamic water loss rate was measured between sensitive genotypes and tolerant genotypes after they were dehydrated for 2 h, 4 h, 6h and 8 h. Detailed measurements of WLR at the early stage of dehydration (2, 4, 6, and 8 h) showed that WLR was stabilizing after 8 h, and there were no significant changes between these values and WLR after 24 h. Drought stress was applied to 10-day-old seedlings by draining the solution from the container for defined dehydration periods. Leaf tissues of the selected genotypes were harvested from control plants (time 0); and after 2, 4, 8, and 12 h of dehydration. Differential expression trends of Dhn6, Dhn11, Dhn13 and HVA1 genes were detected in phenotypically diverse drought-tolerant hulless barleys, related to different time of dehydration. Results of quantitative real-time PCR indicated that relative level of HVA1 expression was always higher in tolerant genotypes, rapidly increasing at the earlier stages (after 2-4 h of dehydration). However, HVA1 expressions of sensitive genotypes had a fast increase from 8 h to 12 h of stress. Significant differences in expression trends of dehydrin genes between tolerant genotypes and sensitive lines were detected, mainly in Dhn6 and Dhn13 gene, depending on the duration of the dehydration stress. The relative expression levels of Dhn6 gene were significantly higher in tolerant genotypes after 8 h dehydration, by control with notable higher expression levels after 12 h water stress in sensitive ones. The relative expression levels of Dhn13 gene tended to ascend during exposure to dehydration in drought-sensitive genotypes. However, fluctuate trends of Dhn13 expression level were detected in drought-resistant lines, including in lower expression levels of 12 h dehydration as compared to 8 h water stress. It was conclusion that (1) diverse LEA proteins would play variable roles in resisting water stress in plants; (2) expression of Dhn11 gene was not induced by dehydrated signals because of the trends of expression descended in contrasting genotypes suffered from water deficit and (3) variable accumulations on LEA proteins would be appear in diverse drought-tolerant genotypes during dehydrations. It is deduced that higher accumulations of Dhn6 and Dhn13 expression in 8 h dehydration are related to diverse drought-tolerant lines in crops. The present results indicated that different dehydrin genes would play variable functional roles in resisting water stress when plants were suffered from water deficit. The authors suggest physiologically different reactions between resistant and sensitive genotypes may be the results of differential expression of drought-resistant genes and related signal genes in plants. In addition, contrarily induced expression of Dhn11 and Dhn12 was related to dehydration responsive element (DRE) in barleys. The present study indicated that (1) measurements of WLR and RWC could be considered as one index of drought-tolerant screenings; (2) synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein, (3) higher proportion of 11-amino-repeating motifs and polar amino acid residues would contribute to functions on LEA3 protein, (4) the longer drought, the more accumulation on LEA proteins, except for Dhn11 gene in crops and (5) differential responses on expression of LEA protein genes would result in physiological traits of drought tolerance in plants.
Resumo:
水稻是重要的粮食作物,其产量的增加和品质的改良都是关系国计民生的大事。就我国现阶段的国情而言,水稻产量在现有水平上稳步提升仍是未来十几年甚至几十年农业生产最重要的目标之一。尽管根据“超级杂交水稻育种”的战略设想和水稻育种实践,通过不断地改进育种技术可望在更高的产量水平上进行水稻杂种优势利用,在稻属植物内还具有很大的产量潜力可以挖掘。然而,仅仅从现有的种质基础出发,要更大幅度提高水稻单产,实现“超级杂交稻”的目标也存在一些困难:现有的推广品种是二倍体,尽管种类众多,但是其基因组的来源相对单一;同时,水稻基因组DNA含量也是作物中最少的,基因组内寻求开发潜力有一定困难;水稻作为C3植物,光合利用效率不高也是制约水稻产量提高的因素之一。因此,寻求常规手段以外的技术突破或者方法创新,是实现“超级杂交稻”的目标的迫切需求。本研究利用秋水仙素能抑制细胞分裂中纺锤丝的收缩、使细胞染色体加倍的作用,对水稻幼穗诱导的愈伤组织细胞进行加倍,并分化出再生植株;创制出水稻同源四倍体新的种质材料,在此基础上选育水稻同源四倍体雄性不育三系材料,并实现水稻同源四倍体的三系配套,开展水稻同源四倍体杂种优势利用和四倍体杂交水稻选育研究,建立水稻同源四倍体杂种优势利用的新技术体系。这不仅有助于倍性水平杂种优势的开拓和利用,同时也将为我国新世纪“超级稻”育种研究开辟一条新的技术途径。 水稻幼穗诱导愈伤组织并分化成苗是一项成熟、简单的组织培养技术。本研究以普通二倍体水稻亲本为材料,用秋水仙素进行水稻的多倍体化诱导,创制同源四倍体水稻三系亲本材料并对其进行鉴定。多倍体化以秋水仙素诱导的愈伤组织培养为基础,研究不同秋水仙素浓度梯度和愈伤组织诱导培养基组合对诱导四倍体植株的影响。结果表明在MS+2,4 D 1.0mg/L+ KT0.2mg/L+ IAA0.2mg/L 和500mg/L的秋水仙素处理下,水稻愈伤组织染色体加倍(有最高的效率)效果较好,平均加倍频率可达25.26%,其中,材料CDR22和IR26诱导较易成功,加倍频率分别达到75%和26.5%;相对材料94109 1.3%加倍频率和冈46B 10.8%加倍频率,诱导率差异极显著。 对水稻四倍体材料进行了形态学鉴定结果表明,与二倍体水稻对照相比其株高、穗长、花粉育性等主要农艺性状,确定四倍体材料在穗长和千粒重两方面极显著提高,种子的长度和宽度也显著增长。对花粉育性鉴定,确认水稻四倍体不育系材料仍为不育,保持系材料自交和杂交可育,恢复系材料自交和杂交可育。对四倍体材料进行细胞形态、染色体数目等方面进行细胞学鉴定,经核型分析表明水稻四倍体材料具有48条染色体,是二倍体水稻的两倍。水稻四倍体材料根尖分生组织细胞与二倍体的根尖分生组织细胞相比,细胞体积、细胞核和核仁显著增大。四倍体三系材料在细胞有丝分裂中期均可规则排列在赤道板,并能均等地移向两极;后期观察中没有发现染色体分离滞后现象,分裂末期细胞能够形成大小相对均一的子细胞。水稻同源四倍体三系材料细胞分裂未见异常,植株生长发育正常。 从1996年至2006年,针对结实率、有效分蘖、着粒数和穗长等主要农艺性状,通过系谱选育的方法,对培育的同源四倍体水稻亲本材料进行了连续选择和改良,取得较好成效。表现为结实率的改良效果极佳,所有改良材料的平均结实率均呈上升趋势,如D237(29.70%→72.70%)、DTB(19.55%→53.21%)等。有效分蘖总体呈现上升趋势,但在不同的年份,如1998和2002存在较大的负向波动。部分材料改良效果明显,如D19B(5.87→13.50)、D什香 (7.00→12.00)等;同时一些材料如DTB和D明恢63虽然总体略有提高,但在不同的年份波动很大,因此存在较大改良阻力,原因还有待进一步研究。着粒数的改良上升趋势比较显著,除保持系的DTB之外,其余材料的平均着粒数有显著提高。穗长的改良阻力较大,虽然不同材料总体上有所提高,但效果并不显著,并且不同年份有较大负向波动(2001)。此外还对株高、剑叶长等性状也进行了选择,但效果不显著,原因有待进一步提高。同源四倍体材料产量相关性状遗传改良幅度不一致,保持系和恢复系间的遗传改良效果也存在差异。这为同源四倍体水稻的进一步利用打下了良好的基础。 籼稻和粳稻亚种间杂交及杂种优势利用的主要障碍就是其低的结实率。而同源四倍体杂交水稻的研究为提高杂交水稻的杂种优势利用创造了新的途径。本研究通过随机区组设计方案,挑选性状优良的二倍体水稻材料,包括雄性不育系,保持系和恢复系进行秋水仙素诱导加倍,从而获得同源四倍体水稻对应的三系材料。利用选育的优良水稻同源四倍体三系材料,配制7个杂交组合,杂交F1代与其恢复系亲本进行比较,用于计算超亲优势(HB);而杂交F1代与生产上大面积推广的二倍体杂交品种汕优63进行比较,用于计算杂种优势。结果显示,同源四倍体杂交水稻的超亲优势表现为:每株有效穗变化幅度为1.4%至105.9%,总粒数为0.5%至74.3%,每穗实粒数为17.6%至255.7%,结实率为9.6%至130.4%。这些农艺性状的改良使得这7个杂种F1的理论产量的超亲优势高达64.8%至672.7%。小区试验中四倍体杂交水稻组合T461A/T4002和T461A/T4193分别比二倍体对照汕优63提高46.3%和38.3%以上,除一个品种以外所有品种产量均接近或高于汕优63的产量。同源四倍体水稻强大的杂种优势表明,亚种间杂交育性低的问题可通过四倍体化及强化选择来解决。此外,同源四倍体杂交水稻器官的巨大性也是其产量提高的有利因素,水稻同源四倍体三系杂种优势利用研究具有一定的理论价值和商业生产潜力。 Rice is one of the major food crops, the improvement of the production and quality of it is an important thing related to the people's livelihood. On China's current national conditions, steadily increase of the rice yield based on the current level is still one of the most important goals in the next decade or even decades of agricultural production. According to the "super hybrid rice breeding" the strategic and rice breeding practice, improvement of the use of hybrid rice heterosis through continuous improvements in breeding technology is expected to get a higher level of rice yield, there are also a great yield potential can be exploited. However, there are also some difficulties to increase rice yield obviously and implement the goal of "super hybrid rice" based on the existing germplasm: Rice varieties in promotion are diploid, although there are many varieties, but their genome are from a comparatively single source; Meanwhile, the rice genome DNA are the least among the crops, it is difficult to exploit the development potential within the genome; Rice as C3 plants, photosynthetic efficiency is not high, it is one of the factors constraint rice yield. Therefore, seeking technological breakthroughs or innovative methods different from conventional means is the urgent needs to reach the target of "super hybrid rice". Using colchicine inhibit spindle contraction during cell division, double the cell chromosome, we induced callus cells from rice panicle to be doubled, and differentiated regeneration; we created a new autotetraploid rice germplasm material, and on that basis we bred male sterility three line autotetraploid rice materials, and the achieved the three line rice autotetraploid matchmaking, researched in autotetraploid rice heterosis usage and tetraploid hybrid rice breeding, constituted a new technology system of autotetraploid hybrid rice heterosis utilization. This not only helps the tetraploid rice heterosis exploration and use, but also inaugurates a new technical means for China in the new century "super rice" breeding research. We chose ordinary diploid rice as materials, using colchicine to induce the polyploidization, created the autotetraploid rice three-line materials and identified them. The polyploidization was based on the colchicine-induced callus tissue culture, and we experimented different colchicine concentrations and culture mediums to induce tetraploid plants, confirmed that the optimal concentration for inducement was 500 mg/L, the average induce rate was 25.26 %. Among all the materials, CDR22 and IR26 had higher induced rate; in contrary, 94109 and GANG46B had lower induced rate, the difference was significant. Autotetraploid materials was identified of both morphological and cytological, compared plant height, length of pollen sterility, and other major agronomic traits with a diploid rice as the control plant, identified that the autotetraploid materials had very significant advantages in ear length and thousand-grain weight, as well as the size of the seeds. Cytology identification included observation of the cell morphology, the number of chromosomes, and karyotype analysis on the autotetraploid materials confirmed that their chromosome number was 48, twice of the diploid rice. Mitoses in the three lines were common: chromosomes arrayed normally in metaphase and separated balanced into the two poles, chromosome moved without lagging in anaphase and daughter cells normally formed in telophase except one. It has been proved that tetraploid rice has normal meiosis as their diploid relatives, which usually including series of sub-phases as interphase, prophase I (five sub-phases), prophase II, metaphase I, II, anaphase I, II and telophase I, II. However, abnormal phenomena, such as formation of tetravalent, trivalent and univalent, chromosome lagging and so on, which would finally block meiosis. Configurations of chromosome in metaphaseⅠwere versatile in structure and form accept the bivalent. That condition varied in different strain, suggesting more complex paring configurations and more versatile genetic characters in tetraploid rice. All these abnormalities in meiosis contributed to low fertility of gamete and might consequently resulted in low seed setting. Successive selection and improvement on seed set, productive tiller per plant, total grains per panicle, panicle length and so on had been carried out from 1996 to 2006. The raise of seed sets was significant in both restorers and maintainers. Seed sets of some strains were improved more significantly than others, for example D237(29.70%→72.70%)、DTB(19.55%→53.21%)and et al.. Productive tiller per plant was improved to some extant. The tendency of improvement was rising on the whole but changed in some years such as 1998 and 2002. Part of the stains increased greatly, such as D19B(5.87→13.50)、Dshixiang (7.00→12.00) and so on, but some strains including DTB and Dminghui63 only increased little and decreased in some years by unknown reason. Total grains per panicle increased significantly and all strains except DTB increased. Improvement of panicle length termed to be hard. Different strains showed different capacities for improvement and floating existed in different years for example 2001. It has been proved that other agronomical traits including plant length, flag leaf length and so on could be improved but not significantly by selection also. In a word, agronomical traits could be raised by successive selection that is prerequisite for further utility of autotetraploid rice. Poor fertility is the main barrier for utilizing heterosis between the two rice (Oryza stiva L.) sub-species, indica and japonica. Recently, the development of autotetraploid hybrids (2n=4x=48) has been suggested as a new method for increasing heterosis in hybrid rice. Using standard experimental protocols, the elite diploid rice male sterile, maintainer, and restorer lines were colchine-doubled and autotetraploid counterparts were obtained. Seven resulting hybrids were analyzed for heterobeltiosis (HB), where the F1 was compared to the male parent, and the degree of heterosis, where the F1 was compared to the diploid commercial hybrid, Shanyou 63. The HB among the autotetraploid hybrids ranged from 1.4 to 105.9% for the productive panicles per plant, 0.5 to 74.3% for total kernels per panicle, 17.6 to 255.7% for filled kernels per panicle, and 9.6 to 130.4% for seed set. Improvements in these yield components resulted in the HB for kernel yield ranging from 64.8 to 672.7% among the seven hybrids. Hybrids T461A/T4002 and T461A/T4193 yielded 46.3 and 38.3% more, respectively than Shanyou 63, and all other hybrids but one yielded the same or more than Shanyou 63. The high heterosis for yield suggests that hybrid sterility between two rice sub-species may be overcome by using tetraploid lines followed by intensive selection. Also, the gigantic features of the autotetraploid hybrids may establish a plant structure able to support the higher yield.
Resumo:
青稞(Hordeum vulgare L.var.nudum Hook.f.),即裸大麦,是兼食用、饲用和酿造于一体的作物,有着重要的利用价值。淀粉是青稞籽粒中含量最多、最重要的碳水化合物,淀粉含量、直支淀粉比将会直接影响淀粉的功能特性,进而影响淀粉的应用领域。我国青藏高原青稞的栽培和食用历史悠久,特色青稞资源极其丰富。目前关于青藏高原青稞淀粉特性的报道还不多见,筛选和培育特色淀粉青稞利于拓展青稞的应用领域, 从而提高其经济价值。 本研究以114份青藏高原青稞品种(系)为实验材料,通过SDS-PAGE对材料的胚乳淀粉颗粒结合蛋白(SGAPs)进行分离,确定各蛋白的分子量大小、组合类型和多态性等。然后按照国标法测试材料的籽粒总淀粉含量和直链淀粉含量,通过微型糊化粘度仪分析相应的淀粉糊化特性,最后使用显微镜观察比较了青稞的淀粉颗粒形态特征。主要结果如下: 1、114种青稞中共分离出20种不同的SGAP条带,条带分子量为35.00~112.39 KDa,分布频率为12.28~97.37%。材料含有的SGAPs条带数从10到14不等,超过一半的材料含11种SGAP条带。20种条带形成16种组合类型,其中西藏地区青稞包含所有16个组合类型,四川地区青稞包含其中12个组合类型。青藏高原青稞籽粒淀粉颗粒结合蛋白的差异很大,遗传多样性丰富。 2、114份青稞的总淀粉含量、直链淀粉含量、直支淀粉比、峰值粘度、糊化温度和峰值温度的变幅分别为51.26~66.70%、14.64~29.74%、0.17~0.42、194~1135BU、58.8~65.2℃和81.4~92.4℃,相应的平均值分别为59.82%、23.60%、0.31、722.30BU、62.1℃和88.8℃。群体在总淀粉含量、直链淀粉含量、直支淀粉比、峰值粘度、糊化温度和峰值温度上的分布具有明显的正态性;所有胚乳淀粉体的淀粉粒都呈复粒结构。对西藏和四川的材料进行了分组比较, 两地区的青稞在直链淀粉含量和直支淀粉比上的差异达到显著水平。 3、筛选出18份具有特殊淀粉特性的青稞品种,其中5份材料的总淀粉含量超过65%,包括NB63-1、NB67、甘孜白六棱、98221-1和NB63;3份材料的直链淀粉含量大于29%,包括藏青85、藏青3号和喜马拉6号;8份材料的直支淀粉比小于0.25,包括99033-6、春青稞、阿坝330、Jan-03、米麦114、396、NB63-1和92013;7份材料的糊化温度低于60℃,同时材料的峰值粘度大于1000BU,并且峰值温度低于90℃,包括足捉春、Jan-03、阿坝330、米麦114、春青稞、20003和阿青5号。 4、各淀粉特性间存在高度相关性。直链淀粉含量和直支淀粉比与糊化温度成极显著正相关,与峰值粘度成极显著负相关,与A型淀粉粒数量和大小呈负相关。不同SGAPs组合的品种之间,淀粉含量和淀粉糊化特性间差异均达显著水平。SGAP2、SGAP5、SGAP6和SGAP7可能对籽粒直链淀粉含量、直支淀粉比和糊化温度有正向效应;SGAP3、SGAP9∼SGAP20可能对峰值粘度有正向效应。 本研究对青藏高原青稞淀粉资源进行了较为全面的评价,对该区青稞淀粉特性有了系统的认识。研究筛选出的特殊青稞品种可作为青稞育种和青稞淀粉工业应用的潜在资源,淀粉特性差异巨大的众多青稞品种也为拓宽青稞应用领域提供了丰富的资源保障。本研究对部分SGAPs在性质上的鉴定和功能上的初步推断为青稞材料的筛选提供了指导,也为品质育种提供了理论参考。 Hulless barley (naked barley, Hordeum vulgare L.) is a short- season, early maturing crop with a wide range of adaptation. It has been attracting more and more attention due to its superior nutrition and extensive industrial applications. Starch is the main ingredient in hulless barley seeds which makes up 65 percent of hulless barley’s dry weight. The ratio of the amylose/amylopectin and the size, shape, distribution of starch granules can affect the physico-chemical and functional properties of starch, which may turn affect its utilizations. The Qinghai-Tibet Plateau, which is located in southwestern China, is a typical area of vertical agricultural ecosystem and one of the barley origin centers with abundant hulless barley resources. There are little reports about hulless barley in Qinghai-Tibet Plateau at present. To screen and cultivate some characteristic hulless barley can improve its value. An improved SDS-PAGE was used to identify SGAPs combination of 114 hulless barley varieties. Starch content (total starch and amylose starch) was determined according to the standard methods GB5006-85 and GB/T 15683 using PerkinElmer M341 Precision Automatic Polarimeter and UV spectrophotometer 755B respectively. The pasting properties were measured by BRABENDER Micrio Visco-Amylo- Graph 803201. The morphology of starch granules were observed and compared with Axioplan 2 Imaging light microscopy. The following were the results obtained: 1. There were 20 major SGAPs presented in 114 varieties, with the molecular weight ranged from 35.00 to 112.39 KDa, and the frequencies ranged from 12.28% to 97.37%. The number of SGAP bands in each accession varied from 10 to 14, more than half of the population had 11 bands. There were 16 distinct SGAP patterns in the 114 varieties, the Tibet hulless barley had all of the 16 types and the Sichuan hulless barley had 12 types. The results indicated the Qinghai-Tibet Plateau hulless barley had a polymorphism of the SGAPs. 2. The ranges of the total starch content, amylose content, Am/Ap, peak viscosity, pasting temperature and peak temperature of the 114 hulless barley were 51.26~66.70%,14.64~29.74%,0.17~0.42,194~1135BU,58.8~65.2 and 81.4℃~92.4, with an average of ℃59.82%, 23.60%, 0.31, 722.30BU, 62.1 and 88.8,℃℃ respectively. The distributions of the total starch content, amylose content, Am/Ap, peak viscosity, pasting temperature and peak temperature were visibly normal school. All of the amyloplasts in endosperm of varieties showed bimodal size distributions.The main starch properties of hulless barley from Tibet and Sichuan were separated and compared, the differences on amylose content and Am/Ap were obvious. 3. Eighteen accessions which had special starch properties were screened out. Five accessions with total starch content beyond 65%, including NB63-1, NB67, Ganzibailiuleng, 98221-1 and NB63; three accessions, Zangqing85, Zangqing3 and Ximala6, with the highest amylose content (>29%); five accessions with Am/Ap less than 0.25, including 99033-6, Chun Qingke, A Ba 330, Jan-03, Mi Mai114, 396, NB63-1 and 92013; seven accessions had a pasting temperature under 60, ℃meanwhile their peak viscosity beyond 1000BU and their peak temperature under 90℃,including Zu Cuochun, Jan-03, A Ba 330, Mi Mai 114, Chun Qingke, 20003 and A Qing 5. 4. There were high correlations between starch properties. Amylose content and Am/Ap were positively correlated to pasting temperature, negatively correlated to peak viscosity, negatively correlated to the number and granule size of A-type granule. Different SGAP combinations caused significant diversities in starch content and pasting properties. SGAP2, SGAP5, SGAP6 and SGAP7 may have positive effect on amylose content, Am/Ap and pasting temperature; SGAP3, SGAP9∼SGAP20 may have positive effect on peak viscosity. Our research made a comprehensive evaluation on the hulless barley starch from the Qinghai-Tibet Plateau, we can get a systemic understanding. Some special accessions were screened out can be used on the hulless barley breeding lines and industries utilization.The combination of the SGAPs may become a criterion to evaluate the hulless barley endosperm starch quality. Consequently, the results will be good information for further studies on the hulless barley.
Resumo:
为了从分子水平对中国药用石斛及其混伪品进行鉴定,本文选取了核rDNA ITS 序列和叶绿体DNA 的matK 基因序列进行研究。采用改良的CTAB 法提取石斛的基因组DNA,PCR 产物直接测序法对17 种(共32 份)药用石斛的核糖体内转录间隔区ITS 全序列进行测定,克隆测序法对12 种(共22 份)药用石斛的叶绿体的matK 基因序列进行测定,运用BioEd it,MEGA4.0 等生物软件分析了石斛属植物的rDNA ITS 序列及叶绿体的matK 基因序列的特征,比较了石斛属间、种间、种内不同居群(品种)间的序列碱基差异及遗传距离,应用邻接法构建分子系统树。主要研究结果如下: (1)建立了17 种(共32 份)药用石斛rDNA ITS 区碱基全序列数据库,其中,ITS1 的长度为228~234 bp,GC 含量为45.7%~53.0%,变异位点167 个,占总位点67.34%,信息位点106 个,占总位点42.74%,ITS2 长度为241~247 bp,GC含量为44.8%~55.7%,变异位点165 个,占总位点66.27%,信息位点115 个,占总位点46.18%。 (2)建立了12 种(共22 份)药用石斛的叶绿体matK 基因全序列数据库,叶绿体matK 基因长1410 bp,变异位点51 个,信息位点11 个。除了存在碱基替换的遗传变异外,还存在碱基的插入和缺失。 (3)通过ITS 序列比较分析了各材料间的遗传距离和碱基差异,属间的遗传距离为0.295,石斛种间的平均遗传距离为0.142,碱基相差2~156 个,种内各居群间的平均遗传距离为0.002,碱基相差1~2 个。属间的遗传距离大于种间的遗传距离,种间的遗传距离大于种内不同居群(品种)间的遗传距离。 (4)根据分析石斛叶绿体的matK 基因序列得到,外类群(密花石豆兰)与石斛属间最小遗传距离为0.027,石斛种间的平均遗传距离为0.008,种间最大的遗传距离0.014, 最小的遗传距离为0.003,碱基相差8~20 个。种内不同居群(品种)遗传距离为0.001,相差1~5 个碱基。 (5)利用17 种石斛的全序列数据库及遗传分析软件,通过对待检种rDNA I TS区进行序列测定,成功地对10 个待检种进行了鉴定,并且在原植物开花后得到了验证。 (6)运用12 种石斛的matK 基因全序列数据库及遗传分析软件,成功地对4个待检种进行了鉴定,同样在原植物开花后得到了验证。 (7)本文利用石斛的核糖体内转录间隔区ITS 序列和叶绿体的matK 基因序列数据库分别构建了NJ 树,外类群与石斛属间石斛种间以及种内不同居群(品种)间均能在NJ 树中明显分化开来,二者构建的分子系统树一致,为石斛的分子鉴定提供了依据。 In order to identify Chinese Herba Dendrobii and its adulterant species on molecular level, we studied the sequences of rDNA ITS and chloroplast matK gene. Genomic DNA of Dendrobium was extracted using the modified cetyltrimethyl ammonium bromide (CTAB) method. The PCR products of the rDNA ITS sequences of Dendrobium (32 materia ls) were purified and then sequenced. The PCR products of chloroplast matK gene of Dendrobium (22 materia ls) were purified, cloned and then sequenced. The characteristic of the sequences and the genetic dista nce were compared between Bulbophyllum odoratissimum and Dendrobium, Dendrobium interspecies, and different populations. Phylogenetic trees were constructed using the NJ method by the biology softwares including BioEd it, MEGA4.0 etc. The ma in results as follows: (1) It was built up that the database of rDNA ITS sequences of 17 species of Herba Dendrobii (32 materia ls). The ITS1 was 228~234 bp, the GC content accounting for 45.7%~53.0%. Its variable sites were 167, accounting for 67.34%. The Parsim-Informative positions were 106, accounting for 42.74%. The ITS2 was 241~247 bp, the GC accounting for 44.8%~55.7%. The variable sites were 165, accounting for 66.27%. The Parsim-Informative positions were 115, accounting for 46.18%. (2) The database of the chloroplast matK gene sequences was built up, which contained 12 species of Herba Dendrobii (22 materia ls). The matK gene sequences were about 1410bp in length. There were 51 variable sites and 11 Parsim-Informative sites. And there were nucleotides insertions and deletions in some species , in addition to the nucleotides substitutions. (3) The rDNA ITS sequences were compared and analyzed by the biology softwares. The genetic dista nce between Bulbophyllum odoratissimum and Dendrobium was 0.295. The avera ge genetic dista nce was 0.142 between Dendrobium species, and there were 2~156 variable nucleotides. The avera ge genetic dista nce between different populations was 0.002, and there were 2~156 variable nucleotides. The genetic dista nce between Bulbophyllum odoratissimum and Dendrobium was greater tha n that of Denrobium interspecies. Meanwhile, the genetic dista nce between Denrobium species was also greater tha n that of different populations (variaties). (4) The characteristics of the chloroplast matK gene sequences were obtained after analyzing by the biology softwares. The minima l genetic dista nce was 0.027 between Bulbophyllum odoratissimum and Dendrobium . The ma xima l genetic dista nce was 0.014 between Dendrobium species, and there were 20 variable nucleotides. The minima l genetic dista nce between populations was 0.003, and there were 8 variable nucleotides.The genetic dista nce between populations was 0.001, and there were 1~5 variable nucleotides. (5) The molecular Phylogeny tree was constructed on the database of rDNA ITS the sequences of 17 species of Herba Dendrobii using the biology softwares. Then we authenticated 10 materia ls on molecular level. What’s more, they had been proved when these pla nts flowered. (6) The molecular Phylogeny tree was built up on the database of chloroplast matK gene sequences of 12 species of Herba Dendrobii with the biology softwares.Then 4 materia ls were authenticated on molecular level. Moreover, they had also been proved when these pla nts were in flower. (7) The Phylogenetic trees were separately constructed on the sequences of rDNA ITS and chloroplast matK gene B. odoratissimum and Dendrobium all could be distinguished on the Phylogenetic trees. Meanwhile, the Phylogenetic trees based on two groups of sequences were coincident. rDNA ITS and matK gene sequence could be used as molecular markers for authentication of Herba Dendrobii.
Resumo:
本学位论文主要研究一株放线菌发酵产物的抗肿瘤活性。先对该株放线菌进行活化培养,然后进行大批量发酵,发酵液经过冷冻离心,对离心得到的沉淀和上清液用不同极性的有机溶剂进行萃取,得到六个浸膏样品。对六个样品进行初步抗肿瘤活性检测。 然后对活性浸膏进行分离纯化和活性跟踪。本论文主要进行了如下的工作: 1、对菌种进行活化培养,利用该菌株在280C,200r.min-1条件下进行发酵实验,发酵时间为72h,发酵总量为15L。发酵液经过离心得到上清液和沉淀两部分。 2、分别用石油醚、乙酸乙酯、正丁醇萃取沉淀和上清液,得到编号为1—6的六个浸膏样品,对六个浸膏样品进行初步的细胞毒性和抗HepG2肿瘤活性实验,得出结论为5号样品活性最高。在没有分离纯化的情况下GI50达到0.76µg/mL。 3、对5号样品进行TLC实验,找出能够较好分离5号样品中各组分的溶剂组合,最后得出在氯仿:甲醇=8:1时分离效果较好。然后利用氯仿:甲醇=8:1的溶剂组合作为洗脱剂对5号样品进行过硅胶柱分离纯化并进行活性跟踪分离。 4、对分离纯化后得到的样品进行活性跟踪和结构分析。分离后得到样品A,在其浓度为10µg/ml时,抗肿瘤实验细胞的生长率为73.5%。在浓度为1.0mg/ml时,抗单纯疱疹病毒率(HSVⅡ)为74.5%。结构分析得知其分子式最可能为C41H43N8O4. This dissertation studied about the anti-tumor activity of an actinomycete fermentation product. First, we cultured the actinomycete. Second, we fermented it in large quantities, and then centrifuged the fermentation fluid; the next step is that we extract sedimentation and supernatant in different polar organic solvents, in turn to obtained six samples, which were detected about anti-tumor activity. Last, we purified active sample and tracked activity of it. We carried out the following research work: 1. Activation, culture and screening of the actinomyces was carried on. We used the screening strain to carry on the fermentation when the conditions are 280C,200r.min-1,the fermentation time is 72h. Fermentation fluid volume is 15L.And we obtained sedimentation and supernatant after fermentation fluid was centrifuged. 2. We used Petroleum ether, ethyl acetate, n-butanol separately to extract sedimentation and supernatant, and obtained six samples that were numbered 1-6. From the preliminary cell toxicity and the anti-tumor(HepG2) bioactivity experiment, we found that No.5 sample has the highest activity in the samples; the GI50 was 0.76µg/ml which has not been purified. 3. We Carried on TLC experiment on the No.5 sample, found the solvent composition that can separate each component of the No.5 sample. At last, we found that when the proportions are tri-chloromethane: methyl alcohol = 8:1, the Separation result was the best, and then we used the Solvent composition which proportion are tri-chloromethane: methyl alcohol = 8:1 as eluant to Purify No.5 sample by silica gel column. 4. We tracked the activity of pure sample obtained from Purification and analyzed structure of these substances. We got a compound A after separation, and the cell growth rate was 73.5% when its concentration was 10µg/ml. The anti-virus(HSVⅡ) rate was 74.5% when its concentration was 1.0mg/ml. We analyzed the Structure of A, and informed its molecular formula that was the most likely for C41H43N8O4.
Resumo:
本文介绍了从厌氧间歇膨胀光合反应器内的活性污泥中分离并鉴定的泥生绿菌(Chlorobium limicola Nadson)S1,它属严格厌氧光能自养型细菌,在有硫化物和少量碳酸氢盐存在下,有广泛利用有机物的能力,它的最适生长温度为28-30℃,最适生长PH为6.5-7.0,且含有氢化酶。因此,它能与甲烷发酵菌共存而共同作用,达到废水净化之目的。通过光照(2#反应器)和黑暗(1#反应器)对比实验,表明了在光照条件下即有泥生绿菌S1存在下,反应系统能更好地降低CODcr、BOD5 和提高CH4 含量,在四个负荷段的运行中,2#反应器在后三个负荷段的甲烷含量能稳定在91.6%而1#反应器为87%,2#反应器的二氧化碳含量为4.5%而1#反应器为8.8%,于28.35g/l.d的负荷下,2#反应器CODcr去除率达83.4%,BOD去除率达74.53%,分别较1#反应器高10.8%,6.4%。COD去除率提高了14%,BOD去除率提高了9.3%。本试验的试验条件为:白天自然光照,晚上电源光照,光照强度为1000-2500lux,通过连续动态运转,并以恒定的流速将废液注入反应器中,进水PH控制在6.5-7.2,反应器厌氧,恒温室温度控制在30±1℃。为使整个试验中同一水质条件下进行,进水采用化学合成培养基。This paper reports a Chlorobium Liwicola S1's isolation and identification. It is a strictly anaerobic and photosynthetic autotrophic bacterium. Along with sulfidedepondent CO2 assiwilaton,a few simple organic compounds can be photoassimilated. Acetate is most effectively used. Its best conditons of growth are 28-30℃,PH 6.5-7.0, and it contains hydrogenase. So it can live with methanefermentative bacteria in order to treat wastewater. At the same time, the treatment of wastwater using Chlorobium Limicola S1 with methane-fermontative bacteria under dark anaerobic and light anaerobic conditions is studied. In contrast with 1# reactor-darken, 2# reactor-illuminated can lossen wastewater's CODcr, BOD5 and on hance CH4 content better. In the test, 2# reactor's CH4 content is stable at 91.6%, but 1# reactor's is 87%. The CO2 content of 2# reactor is 4.5%, but 1# reactor's is 8.8%. When the load of teatment is 28.35g/l.d, the COD removal effficiency is 83.4% and the BOD removal efficiency is 74.53% in 2# reactor. They are separately 10.8%, 6.4% higher than 1# reactor's.