190 resultados para 303-U1308
Resumo:
紫外辐射(UV-B)对人类健康、水域和陆地生态系统都存在不同程度的影响。综合论述了近年来有关陆地植物对UV-B辐射响应的研究成果及进展,包括植被外部形态、光合作用和光合色素以及UV-B吸收物质等胁迫响应特征变化。另外,对植被在生态系统尺度上对UV-B辐射增强的响应以及UV-B与其它环境与生物因子间的交互效应也进行了阐述。文献分析表明,约2/3的陆地植被对UV-B辐射增强的响应表现显著,虽然存在种间和亚种间的差异,但多数的研究显示UV-B辐射增强对陆地植被生长和发展存在不利影响。最后指出如何采取措施降低UV-B辐射增强对陆地植被影响,特别是对经济作物的影响将是未来一个重要的研究课题。
Resumo:
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+, Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f(6)5d(1)-S-8(7/2) transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.
Resumo:
Chitosan(chitin)/cellulose composites as biodegradable biosorbents were prepared under an environment-friendly preparation processes using ionic liquids. Infrared and X-ray photoelectron spectra indicated the stronger intermolecular hydrogen bond between chitosan and cellulose, and the hydroxyl and amine groups were believed to be the metal ion binding sites. Among the prepared biosorbents, freeze-dried composite had higher adsorption capacity and better stability. The capacity of adsorption was found to be Cu(II) (0.417 mmol/g) > Zn(II) (0.303 mmol/g) > Cr(VI) (0.251 mmol/g) > Ni(II) (0.225 mmol/g) > Ph(II) (0.127 mmol/g) at the same initial concentration 5 mmol L-1. In contrast to some other chitosan-type biosorbents, preparation and component of the biosorbent were obviously more environment friendly. Moreover, adsorption capacity of chitosan in the blending biosorbent could be fully shown.
Resumo:
SrCO3:Eu3+ /Tb3+ microneedles that grow along the a-axis were successfully prepared through a large-scale and facile hydrothermal method without any template and further annealing treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectra as well kinetic decays, were used to characterize the samples. The preferential growth along a-axis for SrCO3:Eu3+/Tb3+ microneedles has been proposed through analysis of the XRD patterns of samples obtained at different hydrothermal treatment time. Under ultraviolet excitation, the SrCO3:Eu3+ and SrCO3:Tb3+ microncedle samples show a strong red and green emission corresponding to the D-5(0)-F-7(j) (J = 1, 2, 3, 4) transitions of Eu3+ and the D-5(4)-(7) F-j (J = 6, 5, 4, 3) transitions of Tb3+, respectively, which have potential applications in lighting fields.
Resumo:
Silver nanoplates with controlled size are synthesized by seed-mediated growth approach in the presence of citrate. These nanoplates are single crystal with a mean size of 25-1073 nm and thickness of ca. 10-22 nm. The optical in-plane dipole plasmon resonance bands of these plates can be tuned from 458 to 2400 nm. Control experiments have been explored for a more thorough understanding of the growth mechanism. It was found that the additional citrate ions in the growth solution were the key to controlling the aspect ratio of silver nanoplates. Similar to the surfactants or polymers in the solution, citrate ions could be likewise dynamically adsorbed on the growing silver nanoparticles and promote the two-dimensional growth of silver nanoparticles under certain conditions. Small silver seeds were also found to play an important role in the formation of large thin silver nanoplates, although the structure of them was not clear yet and needed further investigations.
Resumo:
The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g(-1) at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.
Resumo:
Effect of cerium on the microstructure and electrochemical performance of the Ti0.25V0.35-xCexCr0.1Ni0.3 (x = 0, 0.005) electrode alloy was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM-EDS), and electrochemical impedance spectroscopy (EIS) measurements. On the basis of XRD and FESEM-EDS analysis, the alloy was mainly composed of V-based solid solution with body-centered-cubic structure and TiNi-based secondary phase. Ce did not exist in two phases, instead, it existed as Ce-rich small white particles, with irregular edges, distributed near the grain boundaries of the V-based solid solution phase. Discharge capacity, cycle stability, and high-rate discharge ability of the alloy electrode were effectively improved with the addition of Ce at 293 K. It was very surprising that the charge retention was abnormal with larger discharge capacity after standing at the open circuit for 24 h. EIS indicated that addition of Ce improved the dynamic performance, which caused the charge transfer resistance (R-T) to decrease and exchange current density (I-0) to increase markedly. The exchange current density of the electrochemical reaction on the alloy surface with Ce addition was about 2.07 and 3.10 times larger than that of the alloy without Ce at 303 and 343 K, respectively.
Resumo:
Both absolute molecular weight and molecular sizes (radius of gyration and hydrodynamic radius) of a vinyl-type polynorbornene eluting from size-exclusion chromatography columns were determined by combined with a static and dynamic laser light scattering detector. The hydrodynamic radius of polymer fraction eluting from size-exclusion chromatography columns was obtained from dynamic laser light scattering measurements at only a single angle of 900 by introducing a correction factor. According to the scaling relationship between molecular sizes and molecular weight and the ratio between radius of gyration and hydrodynamic radius, the vinyl-type polynorbornene took a random coil conformation in 1,2,4-trichlorobenzene at 150 degreesC.
Resumo:
Ti45Zr35Ni17Cu3 amorphous and single icosahedral quasicrystalline powders were synthesized by mechanical alloying and subsequent annealing at 855 K. Microstructure and electrochemical properties of two alloy electrodes were characterized. When the temperature was enhanced from 303 to 343 K, the maximum discharge capacities increased from 86 to 329 mAh g(-1) and 76 to 312 mAh g(-1) for the amorphous and quasicrystalline alloy electrodes, respectively. Discharge capacities of two electrodes decrease distinctly with increasing cycle number. The I-phase is stable during charge/discharge cycles, and the main factors for its discharge capacity loss are the increase of the charge-transfer resistance and the pulverization of alloy particles. Besides the factors mentioned above, the formation of TiH2 and ZrH2 hydrides is another primary reason for the discharge capacity loss of the amorphous alloy electrode.
Resumo:
The effects of crystallization temperature (T,), glass bead content and its size on the, formation of beta-crystal and structural stability of originally formed beta-crystal in glass bead filled polypropylene (PP) were examined. The differential scanning calorimetry (DSC) measurements indicated that the amount of beta-phase in PP crystals was a function of the crystallization temperature and glass bead content. For a constant crystallization temperature, it was observed that the amount of beta-crystal initially increased with increase in glass bead content up to 30 wt.%, and then decreased slightly with further increase in the filler content. From the DSC data, a disorder parameter (S) was derived to define the structural stability of originally formed beta-crystals. The structural stability of originally formed beta-crystals was enhanced with increase in either the crystallization temperature or the glass bead content. Also, the influence of glass bead size (4-66 mu m) on the formation and stability of beta-crystals in PP/glass bead blends was studied. Large glass bead particles suppressed the formation and decreased the stability of beta-crystals.
Resumo:
The electrochemical properties of the Ti0.17Zr0.08V0.35Cr0.10Ni0.30 alloy electrode were investigated. This alloy has good cycle life at 303 K, 313 K, and even at 323 K, but the discharge capacity decreases gradually at 333 K with increasing cycle number. Both the charge-discharge efficiency and the charge-discharge voltage reduce. The electrochemical impendence spectra indicate that the charge-transfer resistance decreases while the exchange current density increases as temperature increases. The apparent activation energy of the charge-transfer reaction is about 50 kJ mol(-1), which is higher than that on the AB(5) type alloy electrode.
Resumo:
采用XRD、FESEM-EDS、ICP及EIS等方法研究了Ti0.17Zr0.08V0.34Nb0.01Cr0.1Ni0.3氢化物电极合金微观结构和电化学性能。X射线衍射分析表明:该合金由体心立方结构(bcc)的V基固溶体主相和少量六方结构的C14型Laves相组成;FESEM及EDS分析表明:V基固溶体主相形成树枝晶,C14型Laves相呈网格状围绕着树枝晶的晶界,元素在两相中的分布呈现镜像关系。电化学性能测试结果表明:该合金的氢化物电极在303 ̄343K较宽的温度区间内,表现出较高的电化学容量,在303K和343K时,电化学容量分别为337.0mAh·g-1和327.9mAh·g-1。在303K循环100周后,容量为282.7mAh·g-1。ICP分析结果表明,氢化物电极在充放电循环过程中,V及Zr元素向KOH电解质中的溶出较为严重。EIS研究表明,金属氢化物电极表面电化学反应的电荷转移电阻(RT)随循环次数的增加而增加,相应的交换电流密度则随循环次数的增加而降低。氢化物电极循环过程中RT的增大以及V和Zr元素的溶解,可能是导致电极容量衰减的主要原因。
Resumo:
By using the average band-gap model, the chemical bond properties of (La1-x, M-x)(2)CuO4(M=Ba, Sr) were calculated. The calculated covalencies for Cu-O and La-O bond in the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of Fe-57 doped in La2CuO4 and Sn-119 doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in Fe-57 and Sn-119 doped La2CuO4.