247 resultados para type specimen
Resumo:
The taxonomy of the douc and snub-nosed langurs has changed several times during the 20th century. The controversy over the systematic position of these animals has been due in part to difficulties in studying them: both the doucs and the snub-nosed langurs are rare in the wild and are generally poorly represented in institutional collections. This review is based on a detailed examination of relatively large numbers of specimens of most of the species of langurs concerned. An attempt was made to draw upon as many types of information as were available in order to make an assessment of the phyletic relationships between the langur species under discussion. Toward this end, quantitative and qualitative features of the skeleton, specific features of visceral anatomy and characteristics of the pelage were utilized. The final data matrix comprised 178 characters. The matrix was analyzed using the program Hennig86. The results of the analysis support the following conclusions: (1) that the douc and snub-nosed langurs are generically distinct and should be referred to as species of Pygathrix and Rhinopithecus, respectively; (2) that the Tonkin snub-nosed langur be placed in its own subgenus as Rhinopithecus (Presbytiscus) avunculus and that the Chinese snub-nosed langur thus be placed in the subgenus Rhinopithecus (Rhinopithecus); (3) that four extant species of Rhinopithecus be recognized: R. (Rhinopithecus) roxellana Milne Edwards, 1870; R. (Rhinopithecus) bieti Milne Edwards, 1897; R. (Rhinopithecus) brelichi Thomas, 1903, and R. (Presbytiscus) avunculus Dollman, 1912; (4) that the Chinese snub-nosed langurs fall into northern and southern subgroups divided by the Yangtze river; (5) that R. lantianensis Hu and Qi, 1978, is a valid fossil species, and (6) the precise affinities and taxonomic status of the fossil species R. tingianus Matthew and Granger, 1923, are unclear because the type specimen is a subadult.
A new genus of grasshopper (orthoptera : acridoidea : Catantopidae : Cyrtacanthacridinae) from China
Resumo:
This paper reports a new genus i.e. Parapachyacris gen. nov and a new species Parapachyacris taiwanensis sp. nov in Cyrtacathacridinae. The new genus is similar to Pachyacris Uvarov, 1923 and differs from the latter in: 1) foveolae lacking; 2) hind tibiae with 10 spines on inner side and 8 spines on outer side; 3) basal part of prostemal process thickened; 4) cross veins right angled with longitudinal veins in apical part of tegmina and 5) the back of body with yellow longitudinal stripe in middle. The new genus is also similar to Patanga Uvarov, 1923 and differs from the latter in: 1) foveolae lacking; 2) basal part of prostemal process thickened; 3) upper side of hind femora with three dark bands and 4) black spots of tegmina lacking. Type specimen is deposited in the National Museum of Natural Science (NMNH), Taichung, Taiwan, China.
Resumo:
Numerical study of three-dimensional evolution of wake-type flow and vortex dislocations is performed by using a compact finite diffenence-Fourier spectral method to solve 3-D incompressible Navier-Stokes equations. A local spanwise nonuniformity in momentum defect is imposed on the incoming wake-type flow. The present numerical results have shown that the flow instability leads to three-dimensional vortex streets, whose frequency, phase as well as the strength vary with the span caused by the local nonuniformity. The vortex dislocations are generated in the nonuniform region and the large-scale chain-like vortex linkage structures in the dislocations are shown. The generation and the characteristics of the vortex dislocations are described in detail.
Resumo:
In this paper, a nano-moiré fringe multiplication method is proposed, which can be used to measure nano-deformation of single crystal materials. The lattice structure of Si (111) is recorded on a film at a given magnification under a transmission microscope, which acts as a specimen grating. A parallel grating (binary type) on glass or film is selected as a reference grating. A multiplied nano-moiré fringe pattern can be reproduced in a 4f optical filter system with the specimen grating and the prepared reference grating. The successful results illustrate that this method can be used to measure deformation in nanometre scale. The method is especially useful in the measurement of the inhomogeneous displacement field, and can be utilized to characterize nano-mechanical behaviour of materials such as dislocation and atomic bond failure.
Resumo:
Structure and dynamical processes of vortex dislocations in a kind of wake-type flow are described clearly by vortex lines, which are directly constructed from data of three-dimensional direct numerical simulations of the flow evolution.
Resumo:
Mn+ irons were implanted to n-type Ge(1 1 1) single crystal at room temperature with an energy of 100 keV and a dose of 3 x 10(16) cm(-2). Subsequently annealing was performed at 400degreesC for 1 h under flowing nitrogen gas. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is restored after annealing. Polycrystalline germanium is formed in annealed sample. There are no new phases found except germanium. The samples surface morphologies indicate that annealed sample has island-like feature while there is no such kind of characteristic in as-implanted sample. The elemental composition of annealed sample was analyzed by Auger electron spectroscopy. It shows that manganese ions are deeply implanted into germanium substrate and the highest manganese atomic concentration is 8% at the depth of 120 nm. The magnetic properties of samples were investigated by an alternating gradient magnetometer. The annealed sample shows ferromagnetic behavior at room temperature.
Resumo:
Low-dimensional systems are constructed to investigate dynamics of vortex dislocations in a wake-type shear flow. High-resolution direct numerical simulations are employed to obtain flow snapshots from which the most energetic modes are extracted using proper orthogonal decomposition (POD). The first 10 modes are classified into two groups. One represents the general characteristics of two-dimensional wake-type shear flow, and the other is related to the three-dimensional properties or non-uniform characteristics along the span. Vortex dislocations are generated by these two kinds of coherent structures. The results from the first 20 three-dimensional POD modes show that the low- dimensional systems have captured the basic properties of the wake-type shear flow with vortex dislocation, such as two incommensurable frequencies and their beat frequency.
Resumo:
Mn+ ions were implanted into n-type Ge(111) single crystal at room temperature at an energy of 100 keV with a dose of 3 x 1016 cm-2. Subsequent annealing was performed on the samples at 400 °C and 600 °C in a flowing nitrogen atmosphere. The magnetic properties of the samples have been investigated by alternating gradient magnetometer at room temperature. The compositional properties of the annealed samples were studied by Auger electron spectroscopy and the structural properties were analyzed by X-ray diffraction measurements. Magnetization measurements reveal room-temperature ferromagnetism for the annealed samples. The magnetic analysis supported by compositional and structural properties indicates that forming the diluted magnetic semiconductor (DMS) MnxGe1-x after annealing may account for the ferromagnetic behavior in the annealed samples.
Resumo:
Cell adhesion is crucial to many biological processes, such as inflammatory responses, tumor metastasis and thrombosis formation. Recently a commercial surface plasmon resonance (SPR)-based BIAcore biosensor has been extended to determine cell binding mediated by surface-bound biomolecular interactions. How such cell binding is quantitatively governed by kinetic rates and regulating factors, however, has been poorly understood. Here we developed a novel assay to determine the binding kinetics of surface-bound biomolecular interactions using a commercial BIAcore 3000 biosensor. Human red blood cells (RBCs) presenting blood group B antigen and CM5 chip bearing immobilized anti-B monoclonal antibody (mAb) were used to obtain the time courses of response unit, or sensorgrams, when flowing RBCs over the chip surface. A cellular kinetic model was proposed to correlate the sensorgrams with kinetic rates. Impacts of regulating factors, such as cell concentration, flow duration and rate, antibody-presenting level, as well as pH value and osmotic pressure of suspending medium were tested systematically, which imparted the confidence that the approach can be applied to kinetic measurements of cell adhesion mediated by surface-bound biomolecular interactions. These results provided a new insight into quantifying cell binding using a commercial SPR-based BIAcore biosensor.
Resumo:
Concrete is usually described as a three-phase material, where matrix, aggregate and interface zones are distinguished. The beam lattice model has been applied widely by many investigators to simulate fracture processes in concrete. Due to the extremely large computational effort, however, the beam lattice model faces practical difficulties. In our investigation, a new lattice called generalized beam (GB) lattice is developed to reduce computational effort. Numerical experiments conducted on a panel subjected to uniaxial tension show that the GB lattice model can reproduce the load-displacement curves and crack patterns in agreement to what are observed in tests. Moreover, the effects of the particle overlay on the fracture process are discussed in detail. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.
Resumo:
The loading reverberation is a multiple wave effect on the specimen in the split Hopkinson torsional bar (SHTB). Its existence intensively destroys the microstructure pattern in the tested material and therefore, interferes with the study correlating the deformed microstructure to the macroscopic stress-strain response. This paper discusses the problem of the loading reverberation and its effects on the post-mortem observations in the SHTB experiment. The cause of the loading reverberation is illustrated by a stress wave analysis. The modification of the standard SHTB is introduced, which involves attaching two unloading bars at the two ends of the original main bar system and adopting a new loading head and a couple of specially designed clutches. The clutches are placed between the main bar system and the unloading bars in order to lead the secondary loading wave out of the main bar system and to cut off the connection in a timely manner. The loading head of the standard torsional bar was redesigned by using a tube-type loading device associated with a ratchet system to ensure the exclusion of the reflected wave. Thus, the secondary loading waves were wholly trapped in the two unloading bars. The wave recording results and the contrasting experiments for examining the post-mortem microstructure during shear banding both before and after the modification highly support the effectiveness of the modified version. The modified SHTB realizes a single wave pulse loading process and will become a useful tool for investigating the relation between the deformed microstructure and the macroscopic stress-strain response. It will play an important role especially in the study of the evolution of the microstructure during the shear banding process. (C) 1995 American Institute of Physics.