92 resultados para the "lower" Hamamelidae
Resumo:
黄河下游花园口至夹河滩河段系典型的游荡型河段.在该河段,黄河大堤内范围宽广,一般洪水频率年份,水流主要限制在主槽内,因此大堤内分布有不少居民点以及纵横交错的保护居民点的生产堤和不少高于地面的灌溉渠堤和公路,使洪水行洪范围受到了很大的限制.当洪峰流量很大时,洪水将造成生产堤溃决,极大地危害滩区居民的生活.因此,设计模拟模型计算网格时需要考虑大堤、生产堤、明显高于地面的道路等阻水建筑物的影响,使这些堤及公路成为计算格网的边.不规则四边形网格能够很好地拟合黄河这种复杂的计算域.数值模拟时采用有限体积法,为确保通量的单向性,文中使用Osher格式计算通量.通过对1982年洪水的模拟,模拟结果表明了模型的合理性.
Resumo:
在澜沧江下游/ 湄公河上游的滇南西双版纳地区,通过样方法比较了热带雨林的连片与3 个小片断的物 种多样性变化趋势。与连续森林比较,片断热带雨林的植物物种丰富度和物种多样性指数都比较低,而且有相当低 比例的大高位芽、中高位芽和附生等生活型植物,而藤本、小高位芽和矮高位芽等生活型植物的比例则较高;泛热 带、热带亚洲至热带非洲的区系成分比例较高,而当地成分则减少;群落的上层树木比下层树木更加稳定。同样,动 物的物种多样性指数和均衡度在片断热带雨林中都较低,与其密切相关的是片断热带雨林的环境质量,而不是片 断的大小。此外,也探讨了片断热带雨林物种变化与森林小气候的关系,阐明了由凉湿向干暖转化的“林内效应"是 其物种变化的重要原因之一。
Resumo:
National Natural Science Foundation of China [U0633002, 30670385]
Resumo:
传统的低等金缕梅类包含7个科,即领春木科(Eupteleaceae)、昆栏树科(Trochodendraceae)、水青树科(Tetracentraceae)、连香树科(Cercidiphyllaceae)、折扇叶科(Myrothamnaceae)、悬铃木科(Platanaceae)和金缕梅科(Hamamelidaceae)。这些科之间的谱系关系以及金缕梅科内部的谱系关系是研究被子植物系统和进化的主要问题之一。本研究的目的在于通过对现有的和本研究中产生的分子和发育学资料的分析来对这些谱系问题进行探讨,希望使我们对这些类群的认识提高到了一个新的水平。 本研究测定了包括连香树科、领春木科、悬铃木科、水青树科和金缕梅科内所有亚科代表共计14个种的rbcL基因,matK基因和18S-26S核核糖体(nrDNA)内转录间隔区(ITS)的序列,并结合原有资料对所有低等金缕梅类(除非洲分布的折扇叶科)及其相近类群进行了分支分析。主要结论包括;传统低等金缕梅类是一个复系类群;金缕梅科也是一个复系类群;ITS序列分析支持将连香树科包含在金缕梅科内,但是,rbcL资料和matK资料不支持将连香树科包含在金缕梅科内。本研究支持金缕梅科内6个亚科的分类系统,即将其分为阿丁枫亚科(Altingioideae)、红花荷亚科(Rhodoleioideae)、马蹄荷亚科(Exbucklandioideae)、壳菜果亚科(Mytilarioideae)、双花木亚科(Disanthoideae)和金缕梅亚科(Hamamelidoideae),但壳菜果亚科的山桐柴属(Chunia)应置于马蹄荷亚科内。 本研究首次描述和报道了金缕梅科5个亚科6个种的花的形态发生。通过对本研究发现的新证据和文献中记载的资料分析表明金缕梅科的花发育的特征无明显的共同式样。从本研究提供的花发育资料得出的值得注意的结论是红花荷属在金缕梅科中的亚科地位得到支持。对牛鼻栓(Fortunearia sinensis Rehd. et Wils.)的花发育研究表明其花性分化在发育晚期才出现。 本文首次对显脉红荷(Rhodoleia henryi Tong)的胚胎学进行了研究。尽管红花荷属是金缕梅科内适应鸟传粉的特化类群,但其胚胎学的特征与金缕梅科其它植物并无明显区别。因此,本研究不支持红花荷属独立成科而支持其在金缕梅科内的亚科地位。
Resumo:
The lower alkene production by the gas-phase oxidative cracking (GOC) or catalytic oxidative cracking (COC) of hexane (C6) with added syngas was investigated. The addition of syngas to the COC process could effectively enhance the selectivity to lower alkenes and decrease the selectivity to COx, because of the preferential reaction between O-2 with H-2 contained in the syngas, whereas it has little effect on the conversion of C6 and product distribution in the GOC process. The high selectivity to lower alkenes of 70% and low selectivity to CO, of 6% at C6 conversion of 66% were achieved over 0.1% Pt/MgAl2O4 catalyst. The COC process of C6 combined with the syngas in the feed could directly produce a gas mixture of lower alkenes, H-2, and CO, which usually is a suitable feedstock for the hydroformylation process.
Resumo:
The molecular dynamics method is used to simulate microcrack healing during heating or/and under compressive stress. A centre microcrack in Cu crystal would be sealed under compressive stress or by heating. The role of compressive stress and heating in crack healing was additive. During microcrack healing, dislocation generation and motion occurred. When there were pre-existing dislocations around the microcrack, the critical temperature or compressive stress necessary for microcrack healing would decrease, and, the higher the number of dislocations, the lower the critical temperature or compressive stress. The critical temperature necessary for microcrack healing depended upon the orientation of the crack plane. For example, the critical temperature for the crack along the (001) plane was the lowest, i.e. 770K.
Resumo:
The Peierls-Nabarro model of the interfacial misfit dislocation array is analytically extended to a family of dislocations of greater widths. By adjusting a parameter, the width of the misfit dislocations, the distribution of the shear stress, and the restoring force law can be systematically varied. The smaller the amplitude of the restoring force, the wider the misfit dislocations and the lower the interfacial energy.
Resumo:
It has been reported recently that single carbon nanotubes were attached to AFM tips to act as nanotweezers. In order to investigate its stability, a vertical single-walled carbon nanotube (SWCNT) under its own weight is studied in this paper. The lower end of the carbon nanotube is clamped. Firstly the governing dimensionless numbers are derived by dimensional analysis. Then the theoretical analysis based on an elastic column model is carried out. Two ratios, I.e., the ratio of half wall thickness to radius (t=R) and the ratio of gravity to elastic resilience ($\rho$gR=E), and their influences on the ratio of critical length to radius are discussed. It is found that the relationship between the critical ratio of altitude to radius and ratio of half thickness to radius is approximately linear. As the dimensionless number $\rho$gR=E increases, the compressive force per unit length (weight) becomes larger, thus critical ratio of altitude to radius must become smaller to maintain stability. At last the critical length of SWCNT is calculated. The results of this paper will be helpful for the stability design of nanotweezers-like nanostructures.
Resumo:
During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained by pellet injection. A value of n(d) tau-E T(i) = 7.8 x 10(20) m-3 s keV was obtained in this mode with T(e) approximately T(i) approximately 11 keV. In the L-mode regime, a regime, a record (140 kW) D-He-3 fusion power was generated with 10 - 14 MW of ICRH at the He-3 cyclotron frequency. Experiments were performed with the prototype launcher of the Lower Hybrid Current Drive (LHCD) systems with coupled power up to 1.6 MW with current drive efficiencies up to < n(e) > R I(CD)/P = 0.4 x 10(20) m-2 A/W. Fast electrons are driven by LHCD to tail temperatures of 100 keV with a hollow radial profile. Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current drive even without phasing the ICRH antennae.